ON INTEGRAL ASSEMBLY MAPS FOR LATTICES IN SL3

BORIS GOLDFARB

1. STATEMENT OF THE RESULT

This paper proves the integral Novikov conjecture in algebraic K-theory for
lattices in the special linear group SL3, a semisimple Lie group of rank 2. The
group SL3; has been used extensively as a trial range in extending analysis on
locally symmetric spaces to “higher Q-ranks”. In a similar way, our argument
uses a refinement of the methods previously successful where geometry of the
group possessed some manifestation of nonpositive curvature [3, 4, 8, 9].

Theorem. IfT is a torsion-free lattice in SL3 and R is an arbitrary ring, the in-
tegral assembly map «: h(I', K(R)) — K(R[I']) from the homology of the group
I' with coefficients in the K -theory spectrum K(R) to the K-theory of the group
ring R[I'] is a split injection. Here K(A) stands for the nonconnective K-theory
spectrum of the ring A.

A major geometric component of the proof is the construction of a new
I'-equivariant compactification of the associated symmetric space which also
contains the Borel-Serre enlargement of the symmetric space and the study of
its properties.

We should point out that the topological Novikov conjecture on homotopy in-
variance of higher signatures has been known for torsion-free lattices in SL3 for
some time, due to various authors. It is also known, in its integral K-theoretic
form as here, for cocompact lattices of SL3, cf. [3]. On the other hand, the
nonuniform lattices are not bicombable [6, 7] which excludes the possibility of
applying techniques from CAT(0) geometry and its analogues to these groups.
According to Margulis [18], all non-uniform lattices in SL3 are arithmetic, that
is, commensurable with the subgroup SL3(Z). The most concrete class of arith-
metic groups are congruence subgroups defined as the kernels of surjective
maps SL3(Z) — SL3(Zy) induced by reduction mod £ for various levels £. The
congruence subgroups of SL3 of all levels £ # 2 are torsion-free, and every
arithmetic subgroup contains a suitable congruence subgroup according to the
solution of the congruence subgroup problem [1]. This identifies a particular
cofinal system of torsion-free lattices in SL3 to which our theorem applies.

2. GEOMETRIC PRELIMINARIES

Symmetric homogeneous spaces. Itis well-known that the homogeneous quo-
tient space X3 = SL3(R)/SO3(R) is a symmetric space of non-compact type.
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Let P3 be the space of positive definite bilinear forms
Py ={x € GL3(R) : x = xt, x >0, det(x) = 1}.

Now SL3(R) acts on P53 by conjugation: g - x = gxg’. The isotropy group of
the identity matrix I € P53 is stab(I) = SO3(R), so 3 = X3. On the other hand,
the exponential map gives an explicit diffeomorphism between the (Euclidean)
space
p={x € M3(R) : x = xt, trace(x) = 0}

of dimension 5 and P3.

Recall that every non-positively curved manifold X may be compactified by
attaching the ideal boundary 0X. In the case of X3, 0X3 can be identified with
unit vectors in

Ti(X)=p, ={Y e M3(R): Y = Y!, trace(Y) = 0, trace(Y?) = 1}

via x ~ Y(x), where Y is uniquely determined by x = yy(w) for yy(t) =
exp(tY)(I) = exp(2tY). The point x is regular if and only if the eigenvalues of
Y (x) are all distinct, so the regular points form an open dense subset of 0.X3,
and the singular points form a closed nowhere dense subset.

Given a vector Y € pi, let A1(Y) > - - - > Ax(Y) be the distinct eigenvalues
of Y. Let E;(Y) be the eigenspace of Y associated to A;(Y) and

Vi(Y) = @ Ej(Y).
Jj=0

The symmetric matrix Y (and the corresponding x € 0.X3) is completely deter-
mined by the vector A(Y) = (A1(Y),...,Ax(Y)) =: A(x) and the flag F(Y) =
(Vi(Y),...,Vk(Y)) =: F(x) in R3.

Theorem 2.1 (Eberlein [5]). The action of SL3 on 0X3 can be expressed by the
formula

g - (A(x),F(x)) = (A(gx),F(gx)) = (A(x),g - F(x)),
where g - F(x) is the standard action of g € SL3(R) on the flag in R3.

Corollary 2.2. g € stab(x) if and only if g - F(x) = F(x).

The equivalence classes W (F) = {x : F(x) = F} < 0X3 are the Weyl chambers
or walls at infinity depending on whether F is a complete flag or not. They
form a tesselation of 0X3 which is a graph and correspond to simplices in the
Tits building so that the boundaries of maximal 2-dimensional flats in X3 are
circular subcomplexes called apartments subdivided by six arcs.

Fundamental Domains. If X = X3 is identified with the homogeneous space
P3 of symmetric positive definite real 3 x 3 matrices (a;;) up to scaling, let [a]
denote the class of the matrix a = (a;j). For y € SL3(Z) write [a] < [y - a]
when the sequence of diagonal entries of a is smaller than the one of y - a
with respect to the lexicographic order in R3. This makes every orbit of SL3(Z)
ordered, and any subset of an orbit contains a smallest point with respect to
the ordering. Let A be the set of reduced points in X which are minimal in their
own orbit. Minkowski showed that A is a fundamental domain for the action of
SL3(Z) on X. The completion of A in X becomes a fundamental domain for the
SL3(Z)-action on X. The domain A can be defined by several inequalities which
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can be found in [19]. Since we are interested in the dynamics of A at infinity,
we may want to rewrite the inequalities in terms of Iwasawa coordinates which
is done in [10, §2.4]. It turns out that A has only an approximate box shape at
infinity. This is corrected by Grenier. His fundamental domain has exact box
shape at infinity [10, §2.7].

Let Py be the standard minimal parabolic Q-subgroup of G, let A be the
maximal Q-split torus of G contained in Py, and K be the maximal compact
subgroup in G(R) whose Lie algebra is orthogonal (relative to the Killing form)
to the Lie algebra of A(R). Let

Ar={ace AR): x(a) <t,Vx e A}.

Recall that Py = Zg(A) - R, (Py). Furthermore, Z;(A) =~ A - F where F is the
largest connected Q-anisotropic Q-subgroup of Z;(A). From the Iwasawa de-
composition, G(R) = K - P(R). This yields the following decomposition:

G(R) =K - A(R)? - F(R) - RyPo(R).
Recall that a Siegel set in G(R) is a set of the form
Zinw=K-Ar-n-w,
where n and w are compact subsets of F(R) and R, Py(R) respectively.

Theorem 2.3 (Borel). There are a Siegel set = = 3¢, «, and a finite set C < G(Q)
such that Q) = C - 3 is a fundamental set for T.

Borel-Serre enlargement. In order to be able to quote from the literature, we
recall a general construction of the Borel-Serre enlargement. This will be soon
specialized to the case of the algebraic group SL3.

Let G be a semisimple linear algebraic group defined over Q and I' be an
arithmetic subgroup of G(Q). If T is torsion-free, Borel and Serre [2] enlarge
the associated symmetric space X of maximal compact subgroups of G(R) so
that the action of I on X extends to the contractible enlargement Xq where it
is compact. The quotient Xq /T is the Borel-Serre compactification of X/T.

Notation. For a linear algebraic group H defined over a subfield k = C we use
the following notation.

Py (H): parabolic k-subgroups of H,
By (H): Borel k-subgroups of H,
RH: radical of H,
S: maximal k-split torus in RH,
A = S(R)Y: Zariski connected component of the identity,
OH: = Nyex+m) ker(x?),
Ly = H/RyH: reductive Levi quotient,
Try: canonical projection H — iH.
Objects with “hats” are associated with L.
Cy: center of Ly,
Sy: maximal k-split torus in Cy with Ay = S (R)? as before,
Ty: maximal k-split torus in Ly /Ch,
Apg: system of positive simple roots with respect to Tw.
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Let k = Q or R. To each x € X is associated the Cartan involution 0, of
G and the unique Ox-lift Tx: Lp(R) — P(R) which gives the 0x-stable lifting
Apx = Tx (Ap).

Definition 2.4. The geodesic action of AE on X is given by a o x = ay - x, where
ax = Tx(a) € Ap is the lifting of a € Ap.

X can be viewed as the total space of a principal Ap-bundle under the geo-
desic action. Ap can be openly embedded into RA~9®) via

AP . (Rikr)A—G(P)_

Let Ap be the “corner” consisting of Ap together with positive A — @(P)-tuples
where the entry o is allowed with the obvious topology making it diffeomorphic
to (0, 0]A-©(P) A, acts on Ap, and the corner X (P) associated to P is the total
space of the associated bundle X x;, Ap with fiber Ap. Denote the common
base of these two bundles by e(P) = Ap\X. In particular, e(G°) = X. Then the
Borel-Serre enlargement
Xe= || e
PEPL(G)

has a natural structure of a manifold with corners in which each corner X (P) =
Llgope(Q) is an open submanifold with corners. The action of Q(k) on X
extends to the enlargement Xx. The faces e(P), P € P(G), are permuted
under this action.

Let gp: X — e(P) denote the bundle map. For any open subset V < e(P) a
cross-section o of gp over V determines a translation of V from the boundary
of Xy into the interior X. For any ¢ € Ap put

Ap(t) ={a € Ap: a* > t*for all x € Ap},

where Ap is the set of those simple roots with respect to a lifting of Tp that
occur in R, P (transported back to Ap). It is complementary to ©(P).

l?eﬁnition 2.5. For any cross-section o (V), a set of the form W(V,o,t) =
Ap(t) o o (V) will be called an open set defined by geodesic influx from V into
X.

There is a natural isomorphism
Ho: Ap(t) x V=W (V,0,t)
which extends to a diffeomorphism
flo: Ap(t) X V=W (V,0,t).

Now W (V, o,t) is a neighborhood of V in X with fiy ({(c,...,0)} X V) = V.
We will call it an open neighborhood defined by geodesic influx from V into X.

All of that done so far works for more general homogeneous H-spaces than
symmetric spaces for semisimple H. Borel and Serre call them spaces of type
S—k. For each Q € Px(G), e(Q) is such a space. So

e(Q k)= || e= || ew®

PePr(Q) Q2PePi(G)
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can be formed; it is diffeomorphic to the closure e(Q) of e(Q) in Xk. In fact,
whenever P < Q, AQ is canonically a subgroup of Ap so that the geodesic ac-
tions are compatible. Ap acts geodesically on e(Q) through Ap/Aq with quo-
tient e(P). The stratum e(P) < e(Q) is the set of limit points of this geodesic
action.

The parabolic Q-subgroups index the simplices W (P) of the Tits building
T(Q) of G. For G = SL3 the Tits building T3(Q) is the simplicial complex with
one vertex for each non-trivial subspace of Q3 and a set of vertices spanning a
simplex if and only if the corresponding subspaces can be arranged into a flag.
The dimensions of the strata and the corresponding Tits simplices are related
via dime(P) + dimW(P) = 4. The incidence relations among their closures
reflect the structure of this building as follows:

e(P)ne(Q) + @ <= e(P)ce(Q) = W(Q) W)= Pcq.

The minimal parabolic (Borel) Q-subgroups correspond to the strata e(P) of
dimension 3, and to the maximal simplices of the building.

Remark 2.6. When B is a Borel R-subgroup of G, we have the Iwasawa decom-
position G(R) = K - Ag - Ng(R), where N = Ry;,B. Then X ~ Ap - Ng(R), and the
geodesic action of Ap on X coincides with multiplication. The quotient e(B)
can be viewed as the underlying space of the nilpotent group Np(R).

Action on a Stratum. Let P be a parabolic R-subgroup of G. The real points of
the Levi quotient split as a direct product

Lp(R) = Mp(R) X Ap,
and there is the Langlands decomposition
P([R) = MP,x - AP,x - LP,X|

where Mp  and Lp, are the stable lifts just like Ap . Recall that Ky is the
stabilizer of x in G(R) acting on X. Then Kp x = Kx N P(R) is the stabilizer of
x in P(R). The Borel-Serre stratum e(P) = P(R)/Kp x - Apx is a space of type S
for P, but it is not a symmetric space in the usual sense. Notice that it is acted
upon from the left by R, P(R).

Definition 2.7. The quotient é(P) is the reductive Borel-Serre stratum.

Denote the quotient map by 1p: e(P) — é(P). Let Kp = 1p(Kp x), then Kp is
a maximal compact subgroup of Mp(R) and is lifted to Kp x by Tx. From the
Langlands decomposition,

é(P) = RyP(R)\P(R)/Kpx - Apx = Lp(R)/Kp - Ap = Mp(R) /Kp
is the generalized symmetric space associated to the reductive group Lp.
Proposition 2.8 ([21]). There is a diffeomorphism
F:R,P(R) xé(P) — e(P)
given by
F(u,zKpAp) = u - Tx(2)KpxApx € e(P) = P(R)/Kp xApx.

Here, zZKpAp € é(P) = Lp(R)/KpAp. The map F certainly depends on the choice
of the basepoint x which determines the lift T.
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Lemma (7.8) of [11] gives a very convenient formula for the action of P(R) on
e(P) in terms of the coordinates that F provides. Notice that for any g € P(R),
g - Txpp(g™!) € ker(up) = RyP(R), so

g-u-Txpp(gt) =gug™t - gteur(g™') € RuP(R)
forallg € P(R), u € R,P(R).

Lemma 2.9. The action of P(R) on R,P(R) x é(P) is given by
g (u,zKpAp) = (g - u - Txpp(g ™), up(g) - zZKpAp).

This formula shows that Ry, P(R) acts only on the first factor by translation.
Specializing it to the action of the discrete subgroup I'» shows that in the case
of the standard (as well as any) Borel subgroup By, when Ry, By (R) = N = e(By),
the action is precisely the left multiplication action of I'z, as a subgroup of N.

It follows from the formula that there is another equivariant enlargement
where the strata are the reductive Borel-Serre strata.

Definition 2.10. The reductive Borel-Serre enlargement X,f (k =QorR)of X
is the topological space obtained from the corresponding Borel-Serre enlarge-
ment Xy by collapsing each nilmanifold fiber of the projection up: e(P) — é(P)
to a point. These projections combine to give a quotient map p: Xx — X¢ k-

The boundary attached to X3 consists of hyperbolic disks stabilized by max-
imal parabolic subgroups and points fixed by Borel subgroups.
We will need the following explicit description of corners in two cases.

Corners for SL,. The hyperbolic plane X, can be thought of as the open unit
disk E in C or as the upper half-plane H. Elements (“b ) € SLr(Q) acton H

cd
from the left as Mobius transformations z ~ ?Zig, and the action extends to

the hyperbolic boundary oH = R U {c0}. Recall that E and H are related via
the biholomorphic Cayley mappings H — E,z — ? and £ - H,z ~ i*i The
rational points on the unit circle JF are the image of Q < R < a|]-|]. The proper
Q-parabolic subgroups P are the stabilizers of the rational points p in 0[; all
of them are Borel subgroups.

For each P the positive reals A € R, act geodesically on X, by translations
of magnitude log A along hyperbolic geodesics in the direction of the cusp p.
This is the geodesic action. The quotient map gp: X — e(P) is a principal
fibration with hyperbolic geodesics as fibers and the structure group R.. Each
geodesic y can be completed to a half-line by adding a limit point e, in the
positive direction of the R, -action. Extend the action of R, trivially to e,. The
corner X (P) associated to P is the total space of the associated fiber bundle
with typical fiber y U {e,}. Now X(P) = X U e(P) where e(P) is a copy of R
associated with p which parametrizes the geodesics converging to p. Take X
to be Jp X (P) where P ranges over all proper Q-parabolic subgroups.

Given a point and an open interval y € V < e(P), the restriction of a cross-
section of the principal bundle gp to V determines a neighborhood of y in
X (P) defined by geodesic influx from V into X which consists of all points on
geodesics connecting the image of the cross-section to V (including the latter
but not the former). This description makes it clear that X is a Hausdorff
space. Every g € G acts as a Mobius transformation on X and sends a geodesic
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converging to a rational point to another hyperbolic geodesic. If g € T <
SL»(Q) then the new geodesic converges to a rational point and thus defines
gy €oX.

Corners for SL3;. Choose the maximal compact subgroup K = SO3(R) in G =
SL3(R), let Py be the Borel Q-subgroup of G consisting of the upper triangular
matrices, and let Tj be the torus of diagonal matrices denoted by diag(t;). Now
Ay = {diag(t;) € Ty : t; > 0} is the split component of Ty which is stable with
respect to the Cartan involution Ok. Let ® be the set of roots of the Lie algebra
gc of G determined by the Cartan subalgebra ac. Since G = SLj3 is split over Q,
we may identify & and . Choose an ordering on ¢ so that the weights of a are
positive. The set of simple roots with respect to this ordering is A = {1, 2},
where «; denotes the usual mapping t;/t;+1 on Tp.

The conjugacy classes of parabolic Q-subgroups of G are parametrized by
subsets J of A. In particular, if Q is a maximal parabolic Q-subgroup, then it
is conjugate to a standard maximal parabolic Q-subgroup P; given by

P; :PA—{o(j} = {(aij) eG:aix=0k=<j<i}, j=1,2.

So the standard parabolic subgroups in G are either Py or one of

ailr a2 ais ailr a2z ais
Pr=4lax ax ax|eGorP= 0 ax axl|led
0 0 a3 0 asz as

Using

0
TA—{a‘,’} = ( m ker O(i) ,

CGEA,i#]
we have P; = Z(Ta-{q«;1) - Np;. If Aj is the Ok-stable split component of P; in
the radical of Pj, and M; = °L;, where L; = Z(A;) is the Levi subgroup, then
we get the Levi decomposition P; = M; - Aj - Nj. Explicitly, for the standard
Borel subgroup Py we have

1 np nis
My = {diag(t;) : t; = £1}, No = 1 ns | ec
1

For the maximal standard parabolic subgroups

M1={<F €)EG: FeSLg([R),ezJ_rl},

where

SL> (R) = {(? Z) s a,b,c,d eR, det= il},

and

M2={<6 F)ec: FeSLQ([R),e:ﬂ}.

The other groups in the corresponding decompositions are:
a-! 1 0 nj3
A = a1 eG:ac (R}, Ny = 1 no| eGt,
a® 1
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b? 1 n1 nj
As = b1 eG:be R}, No= 1 0|eG
b~! 1
Denote by I3 the 3 x 3 identity matrix and put
-1 1
di = -1 , do = -1 ,
1 -1

then, for i = 1, 2, M; consists of two connected components: M; = {d», I3} XM?
and M, = {d1, I3} x M with M = SL,(R).

In this case rankqg G = 2, so the Tits building is a graph whose vertices are
the points and lines of the projective plane over Q, and edges are the set of
incidence relations among them. If the orbit of A is identified with the first
plane quadrant, then Ay is the corner with interior Ag. The orbits of A; and A»
are the horizontal and vertical lines in Ag. The space e(Py) intersects each Ag at
its vertex, while e(P;), i = 1, 2, intersect A in the vertical and horizontal lines of
its boundary. Fixing a vertex W (P) let C range over all chambers having W (P) as
an endpoint, i.e., over all W (B) for Borel Q-subgroups B < P. These are indexed
by the projective line over Q. The corresponding 3-dimensional strata e(B) are
disjoint in the boundary of the 4-dimensional space e(P). Everywhere in this
paragraph the field Q may be replaced by R. The resulting combinatorial object
T3(R) is dual to the combinatorics of the maximal Satake compactification of X
rather than the noncompact rational enlargements of Borel-Serre and Satake.

Topological Properties. Recall that there is a continuous map u: Xg — Xﬁ
where the reductive Borel-Serre enlargement Xk coincides with the maximal
Satake compactification X° of X, cf. [22], Remark 7.12. For G = SL3 the map u
is the identity on X3 and projects each e(gP;ig~!) = é(gP;g~ ') xR, (gPig~ ') (R),
i = 1, 2, onto the first factor. Using the comparison with the maximal Satake
compactification, the space X% is certainly compact and Hausdorff. We will
also need to use its homological triviality.

Theorem 2.11. The space X5 is Chogoshvili-acyclic.

Proof. Recall that the Chogoshvili homology theory is the unique extension of
the Steenrod-Sitnikov homology to compact Hausdorff spaces from the cat-
egory of compacta satisfying the three axioms of Berikashvili (see [8, §4.3,
§11.3]). So XS needs to be Steenrod-acyclic. We denote the Steenrod-Sitnikov
homology by H, (). We will use the following version of the Vietoris-Begle
theorem.

Lemma 2.12 (Nguen Le Ahn [16]). Let f: X — Y be a continuous surjective map
of metrizable compacta so that

Hi(f'();6) =0
forall y € Y,i < n. Thenif G is a countable group, the induced homomorphism
Hqy(f): Hy(X;G) — Hq(Y;G)

is an isomorphism for 0 < q < n and an epimorphism for q = n + 1.
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According to [12, Theorem 1], X5 is homeomorphic to the Martin compact-
ification XM (Ag) of X at the bottom of the positive spectrum Ag. There is
also the Karpelevi¢ compactification XX [14] which is defined inductively and
maps equivariantly onto XM (Ag) (see [12, Theorem 4]). Lemma 2.12 applies to
this map f: XX — XM(Ag) because the fibers of f are easily seen to be gen-
uinely contractible using the result of Kushner [15] that XX is homeomorphic
to a ball. The same result applied to XX itself shows that all of the spaces in
D" = XK - XK(Ay) = X5 are Chogoshvili-acyclic. V

3. COMPACTIFICATION OF X3

This new compactification of the symmetric space X3 is different from the
classical compactifications in that it also contains the Borel-Serre enlargement
ET = Xq < Xg as an open dense subspace.

The nature of the construction is inductive. The truly basic case is that of
the one-dimensional Lie group L = R acting on itself by addition. The associ-
ated symmetric space is L, and the equivariant compactification we want is the
obvious completion [ = L U {—oc0, +0}.

Next, we deal with corners of hyperbolic disks, as in section 2. Consider the
standard parabolic R-subgroup Py of G = SL». The corresponding reductive
stratum in X% is a point, and

e(Py) = Ry Po(R) = {(O ’5) - x € uzz} ~I.

A proper parabolic subgroup P < SL, stabilizes a point p(P) € 0E and per-
mutes the geodesics abutting to p(P). The stratum e(P) = L parametrizes
those geodesics. Complete each stratum as £(P) = L. The resulting set is X in
which every corner X (P) is declared to be open. So typical open neighborhoods
of z € e(P) in X are the open neighborhoods of z in X(P). Given a line e(P)
and one of its endpoints y, a typical open neighborhood of y consists of

e vy itself and an open ray in e(P) asymptotic to y,

e an open (Euclidean) set U in E bounded by the hyperbolic geodesic y
abutting to p(P) representing the origin of the ray in e(P)—the one
which is the union of geodesics representing other points of the ray,

e points in various e(B), B € P, such that p(B) is on the arc in JE con-
necting p (P) with p(R), the opposite end of y, which are represented
by geodesics with a subray inside U,

o each endpoint of the corresponding (B) if B # P, R, and

o the endpoint of €(R) which is the limit of a ray in e(R) contained in the
set from (3).

This choice generates a well-defined topology consisting of subsets which
contain a neighborhood of each of its members. For example, the intersection
of finitely many rays {p;} < &(P) converging to the same end y of &(P) is
the smallest ray, and the corresponding neighborhood of y is the intersection
of the neighborhoods determined by {p;}. In other words, the totality of all
neighborhoods constructed above forms a base.

With the topology on X generated as above, the subspace X < X has the
hyperbolic metric topology, and §X = X — X is simply S! x I with an analogue
of the lexicographic order topology, see Example 6.2.7 in [8] for a complete
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description. An interesting property is that 6X is compact but not separable
and, therefore, not metrizable.

Minimal Borel-Serre strata. For a torsion-free arithmetic subgroup I' of G(Q)
and any rational Borel subgroup B, I N B(Q) is the largest subgroup which acts
in e(B). It is a cocompact nilpotent discrete subgroup I' n Np of the nilpo-
tent component Np in the Langlands decomposition of B(R). Indeed, for the
standard Borel subgroup Py of G = SL3 and Ny = Np,, I n Ny is the discrete
Heisenberg group, and Ny /I is the compact 3-dimensional Heisenberg nilman-
ifold.

As in the construction of X(SL,), we first compactify each e(B), B € Bg,
I3 = I n B(R)-equivariantly, then provide the new points with neighborhoods
which form a part of the basis for the topology on X. In fact, it suffices to
compactify e(Py) and extend the construction equivariantly to other strata.

Recall that e(Py) can be identified with Ny (Remark 2.6) and that Iy acts on
Ny via left multiplication (Lemma 2.9). The discrete Heisenberg group Iy has
the well-known presentation

Il={(a,b,c|acatc!, becb ¢!, caba b~ 1).

This is the simplest example of a discrete nilpotent but non-abelian group. Each
element of IT can be written uniquely in the form a™bkc!, and the identification
of IT with the subgroup Iy © Ny is given by the mapping

1 m 1
ambk L, 1 k
1
[y contains two subgroups
1 m O 1 0 1
M= 1 0|f=Z and L= 1 k|}=2z7°
1 1

M acts on L by
m-z=mzm ' = (k,1+mk)
for m € M and z = (k,l) € L making I into the semidirect product of M and
L with multiplication
m,z)-(m',zZ)=(m+m',z+m-z').
Systematizing the convenient notation, let us denote the matrix

1 x =z
1 y|eNy
1

by the ordered triple (x,y,z). In this notation the action of Iy on Ny is given
by
(m,k,l) - (x,v,z) =(m+x,k+y,l+z+my).
A fundamental domain for this action is
D={(x,yv,z) e Nog:0<x,y,z<1}.

Definition 3.1. Let €(Py) = NoU 0Ny be the ideal compactification of e(Py) = Ny
viewed as the Euclidean space {(a, b,c)} = R3 with the standard flat metric.
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A straight line in the flat space Ny can be expressed in terms of our coordi-
nates as (x1 + x»t, Y1 + yot,z1 + zot) with the parameter t € R. Now I acts
on the set of such lines:

(m,k, D) - (x1 + x2t,y1 + yot, 21 + 2ot) =
(m+x1 +x2t,k+ y1 + yot, l + my; + z1 + (myn + z2)t).

From this equation we see that the parallelism class of lines with x» = y, =0
is invariant under Iy. The same is true for the class of lines with y, = z» = 0.
Observe that this left action extends to the ideal boundary of No—the points in
0Ny corresponding to the two opposite directions of the line (0,0, t) are fixed
by I, and the open meridian semicircles connecting the two points are orbits.
The action is continuous since the coefficients at t are degree one polynomials
in the coordinates of the directional vector (x», V2, z2).
The right action of Iy on lines is given by

(x1 + x2t, 01 + y2t, z1 + 22t) - (M, k, 1) =
(m+x1 +2x2t,k+ 1+ yot, L + kx1 + z1 + (kxo + z2)t).

Notice that the same poles with x> = y» = 0 get fixed. Also, the sets of equiva-
lence classes with either x» = 0 or y» = 0 are invariant under the right action.
In fact, all right Iy-orbits in the former set are points.

Definition 3.2 (Cubical Cellular Decompositions). Let I* = [-1,1]3 be the 3-
dimensional cube embedded in R3. It has eight vertices indexed by various
triples with entries either 1 or —1. Let us denote this set by V(_;). We also say
that V(_y) is derived from I(_;) = {1} and write this as V(_;) = Ifin- Now
define the following subsets of I:

1 1
I(O) - {_]-10!]-}1 I(l) - {_11_5101511}!

where

k k+1 . .
I(i)Z{—l,...,E, o ,...,1}, kez, -2'<kx<?2

for i € N. We also get the corresponding derived subsets of I3:
Vo), Vi, -, Vig = {vilsy, s2,83)} = I3, ...

where

def (51 S$2 53 i i

Vi (s1,2,83) = (?’E’ ?) , sjeZ, -2'=<sj=<?24

At each stage V(; is the set of vertices of the obvious cellular decomposition
of I3, where the top dimensional cells are 3-dimensional cubes with the j-th

coordinate projection being an interval
ki k;j+1 ..
[y’;y}gL 1<j<i

These cells can be indexed by the triples {(ki, k2, k3) : —2¢ < k; < 21}, the
coordinates of the lexicographically smallest vertex, 23+ triples at all.

These decompositions behave well with respect to the collapse performed
in the boundary of the cube I® which contracts faces

{(x1,%,%) €l :x; = +1} — (£1,b,b).
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The result is a topological ball B3 with the CW-structure consisting of two cells
of dimension 0, four cells of each dimension 1 and 2, one 3-dimensional cell
and a continuous collapse p: I3 — B3. Notice that every old derived cubical
CW-structure in I3 induces a CW-decomposition of the image in the obvious
way.

The right action of Ny or Iy on dNj fixes the poles with x» = y, = 0, and
the circles of points with x» = 0 or y» = 0 are themselves invariant sets. In
particular, the four open arcs complementary to the fixed poles are invariant,
and the four connected components of the complement to the circles are also
invariant. Consider the (—1)-st derived decomposition of I and the corre-
sponding CW-structure in B3. The cells in dB3 are in bijective correspondence
with the invariant cells just described. We will refer to this isomorphism of
CW-structures as Y: 0B3 — ON.

There are cubical analogues of links and stars of the usual simplicial notions.
Thus the star of a vertex is the union of all cells which contain the vertex in
the boundary. The open star is the interior of the star. For the i-th derived
cubical decomposition, the open star of the vertex v;(s, s2, s3) will be denoted
by Star®(v;(s1, s2, s3)). These sets form the open star covering of I3.

By vertices in 0Ny we mean the image Yp (V) N 0I3). Let v € Yp(V(y,) N oI3)
then

Star®((Yp) ' (v) N Vi) = Jvn € Vi Yp(vn) = v Star®(vy)

is an open neighborhood (the open star) of (Yp)~!(v), and, in fact,

Star® (v) ' yYp (Star® (p~ 1YL (v) N Vi)

is an open neighborhood of v which we call the open star of v. The map Yp is
bijective in the interior of I3, so Star® (v) can be defined by the same formula
for v € Yp(V(n) nintl?).

Maximal Borel-Serre Strata. We proceed to Ip,-equivariantly enlarge each of
e(P;), i =1, 2. Recall the projection map

up;: e(P;) = RyPi(R) X é(P;) — é(Py).

Proposition 3.3. Foreach P € Pg(G), the principal R, P (R)-fibration up extends
to a principal fibration

fp: e(P) — é(P).
Proof. This can be seen from [2, §§2.8, 3.10, 5.2, 7.2(iii)]. Let Q < P be proper

parabolic subgroups with unipotent radicals R;,Q 2 R, P, then Q determines a
parabolic subgroup

Qf = mp(Q) = Q/RyP < Lp = P/R,P

with unipotent radical R, Qf = R,Q/Ry,P. Now Aqr is canonically identified
with App (in the notation of Borel and Serre), and the geodesic actions of Aq
on e(P) and é(P) commute with up. So Xp(Q) is a principal R, P(R)-bundle
over X;j,(QF), and the projection To: Xp(Q) — X;,(QF) extends up. These
fibrations T, are compatible with the order in the lattice (P) in the sense that
for each pair Q; € Q> < P the restriction of T, to e(Q2) is the projection of a
principal R, P(R)-fibration with base e(QIZJ ). So the principal fibrations T, are
also compatible with the inclusions X(Q»2) = X(Q;) and match up to give a
principal fibration for e(P) over é(P). V
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The real version
fpr:e(P)g — é(P)g
of the principal fibration fip has the related product structure which extends
fp. The total space e(P;)g is the first partial enlargement of e(P;).
The other enlargement is obtained by compactifying each flat fiber of the
principal fibration pp, with its ideal boundary. In other words, we embed e(P;)
in

e(P) ¥ e(RuPi(R)) x &(P;).

The formula from Lemma 2.9 shows that P;(R) acts on e(P;) by bundle auto-
morphisms. It can be used to see that in general the action extends to £(P;). In
our low-dimensional situation, the following concrete calculation may be more
satisfying.

Proposition 3.4. The inclusion
e(P1) € e(RyP1(R)) x é(Py)
is a P, (R)-equivariant enlargement.

Proof. The added points are the parallelism classes of rays in fibers of up,. We
are going to check that the bundle automorphisms from P;(R) map lines to
lines in a way which preserves the parallelism relation and that the formulae
for the action are polynomial.

A line in the up,-fiber over 2 = zKp, Ap, can be parametrized as

({ue}, 2) = ({0, 1 + yot,z1 + z2t)}, 2) < RyP1(R) x {2}.
An element g € P1(R) maps the fiber to R, P1(R) X {up,(g) - 2}. If g = (gij),
1<i,j<3,931 =93 =0, then
g- 0, y1+y2t,z1 +22t) - g7' =
(0,91121 + 121 + (g1122 + g122)t, 92121 + g2 V1 + (g2122 + g222)1).

The R, P; (R)-coordinate of g - (uy, 2) is given by guyg ="' - gTxup, (g~'), where
9Txtp, (g~1) € RyP1(R). Since the right multiplication in R, P; (R) is simply
the coordinatewise addition, g - (u¢, 2) is a line with the slope coefficients de-
pending polynomially only on y» and z;. V

Proposition 3.5. The inclusion
e(Py) < €(RyP2(R)) x é(P>)
is a P> (R)-equivariant enlargement.

Proof. The proof is identical to that of Proposition 3.4 but the formulae are
different. This reflects the non-symmetric equivariance in the corner associated
toPy. If g =(gij),1<1,j<3,921 =931 =0, and
ur = (x1 + x2t,0,21 + 22t) € RyP2(R),
then
g23
D

gug~' = gn (%(Xl +x0t) — %(21 + 251),0, %(Zl +zot) — P2 (x) + th)) ,

where D = g22933 — g23932. V
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Notation. We will treat the two maximal standard proper parabolic subgroups
P; and P, simultaneously using notation P for either of them. Correspondingly,
the notation that appeared heretofore with the subscripts 1 and 2 is used with-
out a subscript.

The closures of proper Borel-Serre strata for SL; are disjoint in the boundary
of Xg(SL»), and so are the closures of the strata in e(P)g — e(P), where P(R)
operates by automorphisms. It also acts on the disjoint union of the ideal
compactifications £(B), i.e., on

5(P) " e(Py) xpy(w) P(R).
Definition 3.6. Define the set e(P)"= &(P) L1 6(P).

The topology in e(P)” can be introduced by specifying the neightborhoods
of each individual point.

Definition 3.7. The space £(P) has the product topology. For y € &(P) let
N(y) = {0 c e(P)": O contains an open neighborhood of v in &(P)}.

Also, e(P)r < e(P)” is the Borel-Serre construction over R and has topology in
which each corner X(B), B € Pr(P), is open. For y € e(P)g let

N(y) =1{0O c e(P)": O contains an open neighborhood of y in e(P)g}.

Notation. Given an open subset U < ¢(B), let O(U) = q;};(\/), the total space
of the restriction to V = U n e(B) of the trivial bundle gp g over e(B) with fiber
App. If U is any open subset of 6 (P), let

owW) = |J o(Une®)).

BePr

Let € de(B). Recall the map p: e(P)” — eX(MP°). If U is any open subset
of 6(P), define

C(U) ={zee(P)ue(P)g:3 0 e N(z)suchthat ® ne(P) < OU)}u
{ze dP)\e(P)g:Jopen U’ < §(P) suchthat z € U’ and O(U’) € O(U)}
and let
N(y)=1{O ce(P) :Iopenset U < §(P) with y € U and
3 open set V < eX(M°) with C(U) np~'V < 0.
This defines a system of neighborhoods N () for every y € e(P)".

For a subset § < e(P)", let N(S) = {O < e(P)" : O € N(y) for every
v € S}. We call S open if S € N (S). It is routine to check that the open
subsets of e(P)” form a topology. It is also easy to see that X(P) is compact
Hausdorff and Cech-acyclic as in section 2.

Definition of X(SL3). The conjugation action of SL3(R) permutes the Borel-
Serre strata associated to the three standard proper parabolic subgroups P;,
i = 0, 1, 2. Each stratum may be compactified as in Definitions 3.1 and 3.6.
Denoting £(Py) by e(Py)”, define

Yi = e(P;)” Xp,r) SL3(R).
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Since e(Py)” < e(P1)", e(Py)” < e(P>)", we have Y; € Y7, Yy € Y» and can form
5(X3) d:ef Y, Uy, Yo.
Definition 3.8. X = Xz U X = X LU 6X.

The space Xg is the Borel-Serre construct and has the topology in which each
corner X (P) is open. For y € Xg let

N(y) = {0 < X : O contains an open neighborhood of y in Xg}.
Given a maximal parabolic R-subgroup P and an open subset U < e(P)", let
OW) = q;l(V), the total space of the restriction to V = U n e(P) of the trivial
bundle gp over e(P) with fiber Ap. If U is any open subset of 6X, let

oW) = |J o(Une)).
BePr

Notation. Let v € de(B) for some B € Bg and let P, Q € Py such that B <
P, Q. Then for any open neighborhood Q of y in 6X, Q n £(B) contains an
open neighborhood U of y in £(B) such that g (V) U q5' (V) < Q, where
V =Une(B), and gp: e(P) — e(B) and qq: e(Q) — e(B) are the associated
bundles with fibers A(P, B) and A(Q, B) respectively. The point is that

O(Vuap' (V) ugy (V) = g5t (V).

It is convenient to denote this set also by O(U) even though U < &(B) is not
open in 6 X.

Let U be again an open subset of §X. Define
CU)={zeXg:30eN(z)suchthat OnX c OU)}U
{ze 6X\Xp:Jopen U’ c 6X suchthatz€ U’ and O(U’) < O(U)}.
Now for y € §X\Xg let
N((y)={0¢c X:3 open set U < 6X containing y with C(U) < O}.

This gleﬁnes a system of neighborhoods N (y) for any y € X. For a subset
ScXlet N(S) ={0 < X:0 € N(y) for every y € S} and call S primary
open if S € N (S). The following is again easy to check.

Proposition 3.9. The primary open subsets of X form a topology.
Definition 3.10. Let X; be the set X with the primary topology.

Remark 3.11. The primary topology on X; is not Hausdorff. This has to do
with the rank of SL3. Recall that each maximal 2-dimensional flat consists
of six chambers and six walls. Pick two walls which are in opposition: they
lie on a geodesic y through the base point and determine two walls W (P;),
W (P;) at infinity. If z; = gp,(y) € e(P;) then let z{* € R, P1(R) be the first
coordinate projection of F~!(z) (in the notation of Proposition 2.8). The point
z¥ € RyP>(R) is defined similarly. The two points are the limits of y in X. It
turns out that the points of {z}'} x é(P;) and {z¥} x é(P,) match bijectively in
this manner.

By Proposition 3.3 the principal R, P(R)-fibration up extends to fip r. Since
each level is compactified as the hyperbolic disk in the beginning of the section,
{z]'} x é(P;), i = 1,2, embed in the closures of the corresponding strata. It is
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now easy to see that the bijective correspondence described above extends
to these enlargements and to find points y; € {z}'} x (é(P;) — é(P;)) so that
any two neighborhoods of y; and y» in the respective enlargements contain
some points x; € {z{'} x é(P;) which are matched. Equivalently, y; and y, are
inseparable in X;.

There is the obvious set projection p: X — X° extending u from Defini-
tion 2.10. This map should be identity on X and contract each conjugate of
&£(Pp). The complement consists of the conjugates of £(P;) and &(P»>) which
are projected onto the corresponding conjugates of the strata é(P;) and é(P»)
fiberwise.

Definition 3:12. The secondary topology on X is the p-pull-back of the topology
on X5. Let X» be the resulting topological space.

The secondary topology is again non-Hausdorff. By the product of two
topologies on a set we mean the one generated by the union of bases for each
topology.

Definition 3.13. Let X be the space topologized by the product of the primary
and secondary topologies on the set X.

4. PROPERTIES OF THE COMPACTIFICATION

Hausdorff property. For x1, x> € X, if p(x1) = p(x2) € X5 then either x;,
x> € p~l(y) for some y € X5 — X or x; = x» € X. Now each p~1(y) is
Hausdorff, so the points are separated in the primary topology. If p(x1) #
p(x2) € XS then the points are separated in the secondary topology.

Calculus of flats. In order to determine the geometry of open sets in X, we
need to study the geometric question: describe the family of flats asymptotic to
the given two chambers or walls at infinity of a symmetric space X. The answer
is quite natural in terms of horocycles.

Theorem 4.1 (Im Hof [13]). If v, z € 0X are contained in Weyl chambers W (y),
W(z) < 0X, let Ny, N, be the nilpotent components in the corresponding Iwa-
sawa decompositions. For an arbitrary point x € X the intersection of the horo-
cycles Ny - x N N; - x parametrizes the set of all flats asymptotic to both W ()
and W(z).

Now the minimal strata e(B) for B € By parametrize the flats which are
asymptotic to W(B).

Definition 4.2. Define the subsets A(B,B’) < e(B) to be the geodesic projec-
tions qg(Np - x N Np' - x) in the sense that they consist of a € e(B) such that
the flat g3' (a) is asymptotic to W (B’).

This parametrization is more convenient for us because each & € e(B) is
precisely the point of intersection e(B) N qz'(£) = {&}. Now given an open
subset U < e(B), the corresponding open set C(U) < X can be described as
C(clgg'(CU)), and q3'(CU) can be identified once the closure of each flat
az' (%), € ¢ U, is known. This is easy to do for X = X(SL3).

Let W(B), W(B’) be two adjacent Weyl chambers at infinity in 0X(SL3), i.e.,
there exists P € Pr\Bgr with B, B’ c P. Using the product structure on Xg(P)
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and the fact that yg = e(P) n cl(qz' (%)) are geodesics for each € € e(B), we
see that the collection of flats which are asymptotic to both W(B) and W(B’) is
parametrized by A(B,B’) = /:l;},g(y) c e(B), where y € e(BP) is the endpoint
of the well-defined hyperbolic geodesic p(yg) < f(P) connecting f(B) with
f(B"). In other words, A (B, B’) is precisely the set of such & € e(B).

Now let W(B), W(B’) be two Weyl chambers at infinity which are neither
adjacent nor in opposition (that is, do not contain ideal points represented
by the opposite orientations of the same geodesic). This determines unique
chamber W(B’) and walls W(P), W(P’') withB" = PnP’,B<P,B”" <P'. So
each flat asymptotic to W(B) and W (B"") will be also asymptotic to W(B’), and
A(B,B") ¢ A(B,B’). Indeed, A(B,B’) are points in the plane ;];}R(y). Let z
be the other end of the geodesic p(yg). There is a bijective correspondence

A(B',B) = fipp(2) ~ A(B,B').
On the other hand, {z} = f(P) n f(P’), and
A(B',B") = fip'g(z) ~ A(B",B’).
Now /Ilf,,lR(z) and [l};/I’R(Z) are two transverse planes in e(B’) intersecting in a
line L. It is clear that there are bijections
A(B,B") « L «~ A(B",B).

In terms of coordinates (x, y, z) in e(B) induced from e(Py), A (B, B'’) is a line
(x, v, x) with one of the coordinates x or v determined by the choice of W (B’)
adjacent to W (B), the other—by the choice of W (B’’) adjacent to W(B’).
Similarly, on one hand, each point in A (B, B”") uniquely determines a cham-
ber W(B®)) adjacent to W (B"'), on the other—it determines a unique flat which
is, therefore, the unique flat asymptotic to both W (B) and W (B®)). This verifies

Proposition 4.3. Given B, B’ € Br(SL3), the flats which are asymptotic to both
W (B) and W (B") are parametrized by

A(B,B) % A(B',B).
If S < A(B,B’) then o (S) < A(B’,B) is contained in the closure cl(qz*(S)).

In view of the discussion above, using the product structures in X(P), we
can determine the geometry of C(U) for an open subset U < &(B).

Proposition 4.4. If B, B' € Br(SL3) and U < &(B) is an open subset then
v € €(B’) is contained in C(U) if and only if either
(1) v € e(B") and its orthogonal projection 1ty onto A(B’,B) is not con-
tained in the subset Ag(U) corresponding bijectively to U n A(B,B’),
or
(2) y €0e(B’) and y ¢ cl(mzAp(U)).
The intersections of C(U) with €(P), P € Pr\‘Bg, are the obvious open product
subsets.
From this description easily follows

Proposition 4.5 (Weak Summability). Given arbitrary open subsets U; and U, <
&(B), it may not be true that

C(U; v Uy) = C(Uy) UC(U).
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However, the open stars in any derived decomposition of €(B) from Definition
3.2 do have this property.

Corollary 4.6. Given a finite collection of open subsets Q1,...,Qn < X with
&(B) = | Q; there is another finite collection of open subsets Uy, ..., Uy < £(B)
so that

e £(B) c U UJ',

e Vi<jsm3il=<i=smn with C(Uj) <
e« C(UUj) =UC(U;j).

Compactness. It can be shown that X; is compact using [8] where summability
was used implicitly as it holds obviously in the rank one case. However com-
pactness of X; and X, alone does not imply compactness of X. This will follow
from

Lemma 4.7. For each y € X5 — X and any open neighborhood U of =1 (y) in
X there exists an open neighborhood V of y such that w=1(y) c U.

Proof. The topology in X5 can be described by making a sequence convergent
if and only if it converges to a maximal flat and its projection onto the flat
converges in Taylor’s polyhedral compactification [12, 20].

Suppose y = f(B) for some B € Bg. Then U is a neighborhood of £(B) < X.
We know from Corollary 4.6 that there is a neighborhood M of de(B) < &(B)
and a section o: e(B) — X of gp so that

N(B):=CM)uW(e(B),o,0) cU,

and the closure of the complement of N(B) does not intersect £(B). In partic-
ular, this means that for each flat F asymptotic to W (B),

W(B) ¢ FnN(B).

If A; is a sequence in T(CN(B)) < X® converging to f(B) then there is a se-
quence ¢; with the same limit contained in a flat asymptotic to f(B). The
preceding discussion shows that ¢; would lift to a sequence (¢; itself!) con-
verging to W (B) which is impossible. So the closed set

m(CN(B)) n f(B) = @.

Now any neighborhood of f(B) in C7r(CN(B)) will do as V. A simpler argument
works for y € int f(P;),i=1or 2. V

Let ‘U be an arbitrary open covering of X. Since 1t~1(y) is compact for each
y € X5, let Uya,-..,Uyn, be afinite collection of elements of U with

ny
mHy) c U Uy,i.
i-1

By Lemma 4.7 there is V), such that

Ny
i=1
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By compactness of X° there is a finite collection of points y1,..., v, with X5 =
Vyl U e U Vyk. Then
Ny, Ny
X=UUpiv---ul Uy,
i=1 i=1

Cech-acyclicity.

Definition 4.8. The modified Cech homology of a space Z with coefficients in
S is the simplicial spectrum valued functor

h(Z;$) = holim (N_ A S),
CovZ

where Cov Z is the category of finite rigid open coverings of Z defined in [3].
This is a generalized Steenrod homology theory.

Thus X being Cech-acyclic is equivalent to weak triviality of the homotopy
inverse limit
h(X;KR) = holim (NU A KR).
UéE;bX

Theorem 4.9. If f: X — Y is a surjective continuous map, whereY and f~1(y)
are Chogoshvili-acyclic for each v € Y and for any abelian coefficient group,
then 3

f:h(X;KR) — h(Y;KR)
is a weak homotopy equivalence. So both X and Y are Cech-acyclic.

Proof. Apply the weak Vietoris-Begle theorem for the modified Cech theory [8,
Theorem 11.3.1]. The fibers need only be Chogoshvili-acyclic for the result of
Inassaridze used in that proof. V

Now the fibers of p: X — XS are either points, disks, or closures of max-
imal Borel-Serre strata which are all Chogoshvili-acyclic by the theorem of
Inassaridze and induction. Since X5 is Chogoshvili-acyclic by Theorem 2.11,
Theorem 4.9 applies to p, and X is Cech-acyclic.

5. PROOF OF THE THEOREM

The general plan of the proof is common with [3, 4, 8, 9] which is to interpret
the assembly map « as the I'-fixed point map between two I'-spectra

Br, AK(R) <. K(RI)

L
RY - 7T

Here R is the locally finite homology of Xq with coefficients in K(R) and T is

the Cech homology spectrum Sh(Y;K(R)). We refer to [4] for the proof of the

two equivalences in the diagram whenever Y is a boundary of the universal free

I-space ET satisfying a list of required properties. In our situation, X serves

as a model for ET, Y is the boundary in the compactification from section 3,
and all of the required properties were verified in section 4. The fixed point set
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map induces a map on homotopy fixed points and the following commutative
square

r
RT T TT

-] l

ht
th T hT

It is known that 1Ti‘r is a weak equivalence whenever 1my: R — 7T is a weak
equivalence. This makes the assembly map «(I') the first map in a composition
which is a weak equivalence. It is then a split injection at the level of homotopy
groups.

In fact, this choice of the target 7 was fine enough only in [3]. In other cited
references the choice of the target had to be more refined. The idea is to replace

h(Y;K(R)) = holim N_ A K(R)
CovY

with a different homotopy limit over an equivariant category of covering sets
in the boundary Y so that there is a weak equivalence

0: holim N A K(R) — holim NA A K(R)
Covy AeA

In order for the limit to fit into the commutative diagram and serve as a new
target 7, the category A needs to satisfy a list of new conditions that we extract
from [8, 9].

Definition 5.1. For any subset K of a metric space (X, d) let K[D] denote the
set {x € X : d(x,K) < D}. If (X,d) is embedded in a topological space X as
an open dense subset, a set A € Y = X — X is boundedly saturated if for every
closed subset C of X with C n'Y < A, the closure of each D-neighborhood of
C\Y for D = O satisfies (C\Y)[D]NnY < A.

The required conditions on A are as follows.

(1) Thereis asubcategory Ord Y of CovY such that the inclusion j: OrdY -
CovY induces a weak homotopy equivalence;

(2) For each set U = ¢(y) for ¢ € OrdY there is an open set V(U) < X
with the following properties: (1) V.NY = U and (2) {V(U) : U €
im ¢} eorqy form a cofinal system of finite coverings of Y by open sub-
sets of X;

(3) Given a covering ¢¢ € OrdY, there is an assignment (which we call
saturation and denote by sat) of a based boundedly saturated subset
Ay €Y to each set ¢p(y) so that sat induces a natural transformation

saty,: N A K(R) — Nsat(_) A K(R),

and the collection A above is precisely the result of applying saturation
to Ord Y. We require the resulting collection to be excisive in the sense
defined in [4]. We require that each morphism sat, is a weak equiva-
lence of spectra by Quillen’s Theorem A applied tosat,: N — Nsat( ).

The rest of the proof consists of the construction of coverings of Y satisfying
the listed conditions.
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Partial Cellular Decomposition. The cells in 0N described in Definition 3.2
make a symmetric picture in the standard corner where Ny = e(Py) is the base
of two geodesic bundles e(P;) and e(P,). There is a product structure in each
&(P), P € Pg\Bq, so that the closure of each lift of é(P) in e(P)” determines
a point in the appropriate meridian o (depending on the type j of P) for
each B < P. In e(P;)" the lift to &; x é(P;) determines a vertex in o p,. The
complements in each of the two meridians are the 1-cells, and the complements
of the circles in 0Ny are the 2-cells.

Similar decompositions are well-defined in other boundaries of Borel strata:
for each B € B with B < P’, P”, e(B) = R,B(R) where R,P’'(R) and R,P" (R)
are subgroups isometrically embedded in the transported flat metric. Their in-
tersection is a geodesic converging to the two 0-cells and 6R, P’ (R) UOR,P"' (R)
is the 1-skeleton in 0R, B(R). The 2-cells are the four connected components of
the complement. Now the derived cell structures in €(B) may be introduced so
that the induced deriveds in 0R,P(R) are compatible with the product struc-
tures in 0R,P(R) x £(é(P)).

Consider derived cubical decompositions of the unit square I? and their
images under homeomorphisms 1p: I? — £(é(P)). The nerves of the open star
coverings of £(é(P)) or é(P) are clearly contractible. We consider finite open
coverings O k,p of €(P) by the products of open stars in (unrelated) cubical
decompositions of R, P(R) and é(P).

Let & 3 and 9% fori, j,t € {1,2} be the two 0-cells and four 1-cells in de(B)
(here t is the type of the adjacent maximal parabolic subgroup). Define

Gijp = (Ei,B U 9%) X (é(P))[a,

where P is the maximal parabolic subgroup of type k containing B. It is clear
that this definition is independent of the choice of B < P.

Bounded saturation. The space X contains X as an open dense I-subset; in
particular, I' acts continuously on X as before.

Definition 5.2. The metric that we use in X is a transported I'-invariant metric.
It is obtained by first introducing any bounded metric in the compact X/T and
then taking the metric in X to be the induced path metric where the measured
path-lengths are the lengths of the images in X,/T under the covering projection.

Now we can identify a Boolean algebra of boundedly saturated sets fine
enough for our purposes.

Proposition 5.3. The following subsets of Y are boundedly saturated:
e each subset g; jp for P € Pg\Bq,
e each 2-cell in de(B) for B € Bq,
e each £(P) for P € Pr\(Pq U PRr).

Proof. For the purposes here, one can use commensurability inavariance of the
saturation property [8] and substitute the given group I' with SL3(Z) and use
Grenier’s fundamental domain. A union 7 of this domain and a finite number
of its adjacent translates may be taken to intersect e(Py) in the domain D for
the discrete Heisenberg group action. If w is chosen to contain the domain
D then the Siegel set ¥ from Theorem 2.3 can be chosen (taking t = 2//3)
to contain 7. In fact, the corresponding domain and set for the action of the
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torsion-free I' is a union of appropriate translates of 7" and X respectively. Now
the domains are arranged so that one can isolate the candidates for boundedly
saturated sets using “barriers” literally as in section 8.4 of [8]. V

Definition 5.4. The boundedly saturated sets identified in Proposition 5.3 gen-
erate a Boolean algebra of sets BA.

Orderly coverings. We will construct a cofinal family of finite open coverings
of Y. Recall that a rigid covering 8 € CovY of Y consists of pairs x € U(x)
where x € Y and the values U(x) lie in a finite open covering of Y. Let ‘U be
the underlying finite open covering im f.

Fix a Borel subgroup B € Bgr(SL3). There is a number £ € N with £ > np
and an open neighborhood Uz > f(B) in X® with

Prelnfy, ;, (v) €'Y 0 C(Stard, (v)) N p~'Up < B(x)

for each v € V(y,) and some x € Y. Let1 be the set consisting of all P € Pg \ Br
such that f(P) n CUg # @. Let § consist of all B" € Bg such that

A(B,P) N Star‘z,B(v) =@ and A(B,P)n Star(éB(v) + .
Now we can define Vg (U) < Up such that

Us\Vg=Ugn |J f(P)
B«P€el

and
f - ,
Infy, 1, (v) € Preinfy, y, (V) N pL(Ve)\ | €(B).
B'es
The union of these sets over all v € Vg, is an open neighborhood of ¢(B) in
Y by the weak summabilitAy property.

Using compactness of X, compactness of each e(P)", P € Pr(SL3), and rela-
tive compactness of £(P), one can choose finite subsets % < Bg and )9 < Pr\Br
and numbers 0 < mp, kp € N for P € o satisfying

(1) VB€® 3P € ) such that B < P,

(2) Y = UBEB Inf\th,UB (U) U UPEJD E(P),
and the following properties: fix P € 9 and use the notation »(P) := {B € ®%:
B < P}, then

(3) for some 0 < kp € N and w(P) € 0é(P) N Vi

Y né8(é(P)) = | Infy, y, (v) np~iStary (w) n§(é(P)),
Be»

(4) O, p refines the restriction of ‘U to &(P),

(5) mp = maxgexnp) (), kp = maxgenp) (kp),

(6) each open star in the associated kp-th cubical derived decomposition
of €(é(P)) contains at most one point from {W(B) : B € (P)},

(7) for each w € 0é(P) N V(x,) there exists B € % such that

either W (B) € Starp, (w) or p~! (Starg, (w)) = | Infy, g, (v).
‘UEV(pB)
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For a Borel subgroup B(w) define

Ordg,,u, k, (Vi W) def (InfeB,UB(v)\e(P)A> U P’IStariP(w)

and

f A
ExcOrdy, y, kp, (V; W) L Ordy, vk, (V;w)\ | e(P)™.
B<P’

Consider the category ExcOrdY of finite open coverings by the sets (Exc)Ordy, y, k, (V; W)
and O k,p for all choices of 8, 3,19, etc., and generate all finite rigid coverings
w € CovY which satisfy

e imw € ExcOrdY,
e w(y) =0rdy, x(v;w) for some P € )0 if and only if y € £(P),
e if v € £(B) for some B € P then

w(y) = ExcOrdy, ,, x(v;Ww)

for some v where x (W (B)) = Starp(w) for a fixed finite rigid covering
x of eX(MY) by open stars Star(z), z € V),
e W(Y) €Oy if y € e(P).

The resulting coverings form a full subcategory PREORDY < CovY. This proce-
dure may look asymmetric as to the roles of maximal strata played in corners

X(B) =e(P' ) ue(P’)”

when P’, P € o and y € £(B): there is a choice of w and, hence, of particular
P involved here. The asymmetry disappears after the next step when one
generates the smallest full subcategory OrdY of CovY containing PREORDY
and closed under intersections.

The category Ord Y is not cofinal; however the map

J*: h(Y;KR) — holim (N_ A KR)
ordy

induced by the inclusion j: OrdY — CovY is a weak homotopy equivalence
by Quillen’s Theorem A, cf. [8].

Definition of A. The boundedly saturated coverings we produce are outcomes
of actual saturation with respect to some Boolean algebra of boundedly satu-
rated sets. Saturation enlarges the sets in @Ord Y using the chosen coverings
o, B €%, and mtp, P € Y. It suffices to present the construction of boundedly
saturated coverings x(w, xp, Tp) based on generators w € PREORDY.

Definition 5.5. For B € Br(SL3) use the notation «; g or &z, g for the finite rigid
covering of o1 p or o p respectively given by «; () = ag(y) N o for each
¥ € oip. The same formula associates «;p(y) < 0;p to each y € de(B). For
P > B of type i, define [1g p: 6e(B) — im 1tp by

dip(y) x (6(P))g ifBeD,
p (V) X (é(P))é otherwise,

Mpp(y) = {
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where B’ € Bg and the vertices v, w are from w(y) = ExcOrdy,, . v, kp (V;W).
Now define

1P () ifyeelP),PePnPqy
w(y)\eB)ullgp(y) if y € £(B), B X,

w(y)u HB,p(j)(y) if y e ojB, B ¢35,

w(y) otherwise.

O(im(_')/) —

The saturation of a subset S with respect to a Boolean algebra of sets is the
union of elements of BA which intersect S nontrivially. Define x(f) as the
finite rigid covering of Y by the saturations of sets S in &«™'(f) with respect to
the Boolean algebra BA from Definition 5.4. The equivariant category A is the
collection of all such «.

Each of the two steps in this construction preserves the homotopy type of the
nerve of w and «™'. Now the natural transformation N — No™'( ) — Nx( )
is composed of homotopy equivalences. So

holim (N_ A KR) — holim (N&™'(_) A KR) — holim (N&(_) A KR).
ordY ordY ordy

This procedure also defines a left cofinal saturation functor sat: OrdY — A
so that the induced map

sat: holim (Nx(_) A KR) = holim (N_ A KR).
OordyY A

The composition of all weak equivalences above is the required weak equiva-
lence 5
0: h(Y;KR) =~ holim (N_ A KR).
A
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