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1. Statement of the result

This paper proves the integral Novikov conjecture in algebraic K-theory for

lattices in the special linear group SL3, a semisimple Lie group of rank 2. The

group SL3 has been used extensively as a trial range in extending analysis on

locally symmetric spaces to “higher Q-ranks”. In a similar way, our argument

uses a refinement of the methods previously successful where geometry of the

group possessed some manifestation of nonpositive curvature [3, 4, 8, 9].

Theorem. If Γ is a torsion-free lattice in SL3 and R is an arbitrary ring, the in-

tegral assembly map α : h(Γ , K(R))→ K(R[Γ]) from the homology of the group

Γ with coefficients in the K-theory spectrum K(R) to the K-theory of the group

ring R[Γ] is a split injection. Here K(A) stands for the nonconnective K-theory

spectrum of the ring A.

A major geometric component of the proof is the construction of a new

Γ -equivariant compactification of the associated symmetric space which also

contains the Borel-Serre enlargement of the symmetric space and the study of

its properties.

We should point out that the topological Novikov conjecture on homotopy in-

variance of higher signatures has been known for torsion-free lattices in SL3 for

some time, due to various authors. It is also known, in its integral K-theoretic

form as here, for cocompact lattices of SL3, cf. [3]. On the other hand, the

nonuniform lattices are not bicombable [6, 7] which excludes the possibility of

applying techniques from CAT(0) geometry and its analogues to these groups.

According to Margulis [18], all non-uniform lattices in SL3 are arithmetic, that

is, commensurable with the subgroup SL3(Z). The most concrete class of arith-

metic groups are congruence subgroups defined as the kernels of surjective

maps SL3(Z) → SL3(Z`) induced by reduction mod ` for various levels `. The

congruence subgroups of SL3 of all levels ` 6= 2 are torsion-free, and every

arithmetic subgroup contains a suitable congruence subgroup according to the

solution of the congruence subgroup problem [1]. This identifies a particular

cofinal system of torsion-free lattices in SL3 to which our theorem applies.

2. Geometric preliminaries

Symmetric homogeneous spaces. It is well-known that the homogeneous quo-

tient space X3 = SL3(R)/SO3(R) is a symmetric space of non-compact type.
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Let P3 be the space of positive definite bilinear forms

P3 = {x ∈ GL3(R) : x = xt , x > 0, det(x) = 1}.
Now SL3(R) acts on P3 by conjugation: g · x = gxgt . The isotropy group of

the identity matrix I ∈ P3 is stab(I) = SO3(R), so P3 � X3. On the other hand,

the exponential map gives an explicit diffeomorphism between the (Euclidean)

space

p = {x ∈ M3(R) : x = xt , trace(x) = 0}
of dimension 5 and P3.

Recall that every non-positively curved manifold X may be compactified by

attaching the ideal boundary ∂X. In the case of X3, ∂X3 can be identified with

unit vectors in

TI(X) � p1 = {Y ∈ M3(R) : Y = Y t , trace(Y) = 0, trace(Y 2) = 1}
via x , Y(x), where Y is uniquely determined by x = γY (∞) for γY (t) =
exp(tY)(I) = exp(2tY). The point x is regular if and only if the eigenvalues of

Y(x) are all distinct, so the regular points form an open dense subset of ∂X3,

and the singular points form a closed nowhere dense subset.

Given a vector Y ∈ p1, let λ1(Y) > · · · > λk(Y) be the distinct eigenvalues

of Y . Let Ei(Y) be the eigenspace of Y associated to λi(Y) and

Vi(Y) =
i⊕

j=0

Ej(Y).

The symmetric matrix Y (and the corresponding x ∈ ∂X3) is completely deter-

mined by the vector λ(Y) = (
λ1(Y), . . . , λk(Y)

) =: λ(x) and the flag F(Y) =(
V1(Y), . . . , Vk(Y)

) =: F(x) in R3.

Theorem 2.1 (Eberlein [5]). The action of SL3 on ∂X3 can be expressed by the

formula

g · (λ(x), F(x)) = (λ(gx), F(gx)) = (λ(x), g · F(x)),
where g · F(x) is the standard action of g ∈ SL3(R) on the flag in R3.

Corollary 2.2. g ∈ stab(x) if and only if g · F(x) = F(x).
The equivalence classesW(F) = {x : F(x) = F} ⊆ ∂X3 are the Weyl chambers

or walls at infinity depending on whether F is a complete flag or not. They

form a tesselation of ∂X3 which is a graph and correspond to simplices in the

Tits building so that the boundaries of maximal 2-dimensional flats in X3 are

circular subcomplexes called apartments subdivided by six arcs.

Fundamental Domains. If X = X3 is identified with the homogeneous space

P3 of symmetric positive definite real 3×3 matrices (aij) up to scaling, let [a]
denote the class of the matrix a = (aij). For γ ∈ SL3(Z) write [a] < [γ · a]
when the sequence of diagonal entries of a is smaller than the one of γ · a
with respect to the lexicographic order in R3. This makes every orbit of SL3(Z)
ordered, and any subset of an orbit contains a smallest point with respect to

the ordering. Let ∆ be the set of reduced points in X which are minimal in their

own orbit. Minkowski showed that ∆ is a fundamental domain for the action of

SL3(Z) on X. The completion of ∆ in X̄ becomes a fundamental domain for the

SL3(Z)-action on X̄. The domain ∆ can be defined by several inequalities which
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can be found in [19]. Since we are interested in the dynamics of ∆ at infinity,

we may want to rewrite the inequalities in terms of Iwasawa coordinates which

is done in [10, §2.4]. It turns out that ∆ has only an approximate box shape at

infinity. This is corrected by Grenier. His fundamental domain has exact box

shape at infinity [10, §2.7].

Let P0 be the standard minimal parabolic Q-subgroup of G, let A be the

maximal Q-split torus of G contained in P0, and K be the maximal compact

subgroup in G(R) whose Lie algebra is orthogonal (relative to the Killing form)

to the Lie algebra of A(R). Let

At = {a ∈ A(R)0 : α(a) ≤ t,∀α ∈ ∆}.
Recall that P0 = ZG(A) · Ru(P0). Furthermore, ZG(A) ≈ A · F where F is the

largest connected Q-anisotropic Q-subgroup of ZG(A). From the Iwasawa de-

composition, G(R) = K · P(R). This yields the following decomposition:

G(R) = K ·A(R)0 · F(R) · RuP0(R).

Recall that a Siegel set in G(R) is a set of the form

Σt,η,ω = K ·At · η ·ω,
where η and ω are compact subsets of F(R) and RuP0(R) respectively.

Theorem 2.3 (Borel). There are a Siegel set Σ = Σt,η,ω and a finite set C ⊆ G(Q)
such that Ω = C · Σ is a fundamental set for Γ .

Borel–Serre enlargement. In order to be able to quote from the literature, we

recall a general construction of the Borel–Serre enlargement. This will be soon

specialized to the case of the algebraic group SL3.

Let G be a semisimple linear algebraic group defined over Q and Γ be an

arithmetic subgroup of G(Q). If Γ is torsion-free, Borel and Serre [2] enlarge

the associated symmetric space X of maximal compact subgroups of G(R) so

that the action of Γ on X extends to the contractible enlargement X̄Q where it

is compact. The quotient X̄Q/Γ is the Borel–Serre compactification of X/Γ .

Notation. For a linear algebraic group H defined over a subfield k ⊆ C we use

the following notation.

Pk(H): parabolic k-subgroups of H,

Bk(H): Borel k-subgroups of H,

RH: radical of H,

S: maximal k-split torus in RH,

A = S(R)0: Zariski connected component of the identity,
0H:= ⋂χ∈X∗(H) ker(χ2),

L̂H = H/RuH: reductive Levi quotient,

πH : canonical projection H → L̂H .

Objects with “hats” are associated with L̂H .

ĈH : center of L̂H ,

ŜH : maximal k-split torus in ĈH with ÂH = ŜH(R)0 as before,

T̂H : maximal k-split torus in L̂H/ĈH ,

∆̂H : system of positive simple roots with respect to T̂H .
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Let k = Q or R. To each x ∈ X is associated the Cartan involution θx of

G and the unique θx-lift τx : L̂P(R) → P(R) which gives the θx-stable lifting

AP,x = τx(ÂP).
Definition 2.4. The geodesic action of ÂP on X is given by a◦x = ax ·x, where

ax = τx(a) ∈ AP,x is the lifting of a ∈ ÂP .

X can be viewed as the total space of a principal ÂP -bundle under the geo-

desic action. ÂP can be openly embedded into R∆̂−Θ(P) via

ÂP 7 -→ (R∗+)∆̂−Θ(P).
Let ĀP be the “corner” consisting of ÂP together with positive ∆̂−Θ(P)-tuples

where the entry∞ is allowed with the obvious topology making it diffeomorphic

to (0,∞]∆̂−Θ(P). ÂP acts on ĀP , and the corner X(P) associated to P is the total

space of the associated bundle X ×ÂP ĀP with fiber ĀP . Denote the common

base of these two bundles by e(P) = ÂP\X. In particular, e(G0) = X. Then the

Borel–Serre enlargement

X̄k =
⊔

P∈Pk(G)
e(P)

has a natural structure of a manifold with corners in which each corner X(P) =⊔
Q⊇P e(Q) is an open submanifold with corners. The action of Q(k) on X

extends to the enlargement X̄k. The faces e(P), P ∈ Pk(G), are permuted

under this action.

Let qP : X → e(P) denote the bundle map. For any open subset V ⊆ e(P) a

cross-section σ of qP over V determines a translation of V from the boundary

of X̄k into the interior X. For any t ∈ ÂP put

ÂP(t) = {a ∈ ÂP : aα > tα for all α ∈ ∆P},
where ∆P is the set of those simple roots with respect to a lifting of T̂P that

occur in RuP (transported back to ÂP ). It is complementary to Θ(P).

Definition 2.5. For any cross-section σ(V), a set of the form Ŵ(V ,σ , t) =
ÂP(t) ◦ σ(V) will be called an open set defined by geodesic influx from V into

X.

There is a natural isomorphism

µσ : ÂP(t)× V '
-→Ŵ(V ,σ , t)

which extends to a diffeomorphism

µ̄σ : ĀP(t)× V '
-→W(V,σ , t).

Now W(V,σ , t) is a neighborhood of V in X̄ with µ̄σ ({(∞, . . . ,∞)} × V) = V .

We will call it an open neighborhood defined by geodesic influx from V into X.

All of that done so far works for more general homogeneous H-spaces than

symmetric spaces for semisimple H. Borel and Serre call them spaces of type

S−k. For each Q ∈ Pk(G), e(Q) is such a space. So

e(Q)(k) =
⊔

P∈Pk(Q)
e(P) =

⊔

Q⊇P∈Pk(G)
e(P)
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can be formed; it is diffeomorphic to the closure e(Q) of e(Q) in X̄k. In fact,

whenever P ⊆ Q, ÂQ is canonically a subgroup of ÂP so that the geodesic ac-

tions are compatible. ÂP acts geodesically on e(Q) through ÂP/ÂQ with quo-

tient e(P). The stratum e(P) ⊆ e(Q) is the set of limit points of this geodesic

action.

The parabolic Q-subgroups index the simplices W(P) of the Tits building

T(Q) of G. For G = SL3 the Tits building T3(Q) is the simplicial complex with

one vertex for each non-trivial subspace of Q3 and a set of vertices spanning a

simplex if and only if the corresponding subspaces can be arranged into a flag.

The dimensions of the strata and the corresponding Tits simplices are related

via dim e(P) + dimW(P) = 4. The incidence relations among their closures

reflect the structure of this building as follows:

e(P)∩ e(Q) 6= ∅ ⇐⇒ e(P) ⊆ e(Q)⇐⇒ W(Q) ⊆ W(P)⇐⇒ P ⊆ Q.
The minimal parabolic (Borel) Q-subgroups correspond to the strata e(P) of

dimension 3, and to the maximal simplices of the building.

Remark 2.6. When B is a Borel R-subgroup of G, we have the Iwasawa decom-

position G(R) = K ·AB ·NB(R), where NB = RuB. Then X ≈ AB ·NB(R), and the

geodesic action of AB on X coincides with multiplication. The quotient e(B)
can be viewed as the underlying space of the nilpotent group NB(R).

Action on a Stratum. Let P be a parabolic R-subgroup of G. The real points of

the Levi quotient split as a direct product

L̂P(R) = M̂P(R)× ÂP ,
and there is the Langlands decomposition

P(R) = MP,x ·AP,x · LP,x,
where MP,x and LP,x are the stable lifts just like AP,x . Recall that Kx is the

stabilizer of x in G(R) acting on X. Then KP,x = Kx ∩ P(R) is the stabilizer of

x in P(R). The Borel–Serre stratum e(P) = P(R)/KP,x ·AP,x is a space of type S
for P , but it is not a symmetric space in the usual sense. Notice that it is acted

upon from the left by RuP(R).

Definition 2.7. The quotient ê(P) is the reductive Borel–Serre stratum.

Denote the quotient map by πP : e(P)→ ê(P). Let K̂P = πP(KP,x), then K̂P is

a maximal compact subgroup of M̂P(R) and is lifted to KP,x by τx . From the

Langlands decomposition,

ê(P) = RuP(R)\P(R)/KP,x ·AP,x = L̂P(R)/K̂P · ÂP � M̂P(R)/K̂P
is the generalized symmetric space associated to the reductive group L̂P .

Proposition 2.8 ([21]). There is a diffeomorphism

F : RuP(R)× ê(P) -→ e(P)
given by

F(u, zK̂P ÂP) = u · τx(z)KP,xAP,x ∈ e(P) = P(R)/KP,xAP,x.
Here, zK̂P ÂP ∈ ê(P) = L̂P(R)/K̂P ÂP . The map F certainly depends on the choice

of the basepoint x which determines the lift τx .
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Lemma (7.8) of [11] gives a very convenient formula for the action of P(R) on

e(P) in terms of the coordinates that F provides. Notice that for any g ∈ P(R),
g · τxµP(g−1) ∈ ker(µP) = RuP(R), so

g ·u · τxµP(g−1) = gug−1 · gτxµP(g−1) ∈ RuP(R)
for all g ∈ P(R), u ∈ RuP(R).
Lemma 2.9. The action of P(R) on RuP(R)× ê(P) is given by

g · (u, zK̂P ÂP) = (g ·u · τxµP(g−1), µP(g) · zK̂P ÂP).
This formula shows that RuP(R) acts only on the first factor by translation.

Specializing it to the action of the discrete subgroup ΓP shows that in the case

of the standard (as well as any) Borel subgroup B0, when RuB0(R) = N ≈ e(B0),
the action is precisely the left multiplication action of ΓB0 as a subgroup of N .

It follows from the formula that there is another equivariant enlargement

where the strata are the reductive Borel–Serre strata.

Definition 2.10. The reductive Borel–Serre enlargement X̄
ρ
k (k = Q or R) of X

is the topological space obtained from the corresponding Borel–Serre enlarge-

ment X̄k by collapsing each nilmanifold fiber of the projection µP : e(P)→ ê(P)
to a point. These projections combine to give a quotient map µ : X̄k → X̄ρk .

The boundary attached to X3 consists of hyperbolic disks stabilized by max-

imal parabolic subgroups and points fixed by Borel subgroups.

We will need the following explicit description of corners in two cases.

Corners for SL2. The hyperbolic plane X2 can be thought of as the open unit

disk E in C or as the upper half-plane H. Elements
(
ab
c d

)
∈ SL2(Q) act on H

from the left as Möbius transformations z , az+b
cz+d , and the action extends to

the hyperbolic boundary ∂H = R ∪ {∞}. Recall that E and H are related via

the biholomorphic Cayley mappings H→ E, z , z−i
z+i and E→ H, z , i1+z

1−z . The

rational points on the unit circle ∂E are the image of Q ⊆ R ⊆ ∂H. The proper

Q-parabolic subgroups P are the stabilizers of the rational points p in ∂E; all

of them are Borel subgroups.

For each P the positive reals λ ∈ R+ act geodesically on X2 by translations

of magnitude logλ along hyperbolic geodesics in the direction of the cusp p.

This is the geodesic action. The quotient map qP : X → e(P) is a principal

fibration with hyperbolic geodesics as fibers and the structure group R+. Each

geodesic γ can be completed to a half-line by adding a limit point eγ in the

positive direction of the R+-action. Extend the action of R+ trivially to eγ . The

corner X(P) associated to P is the total space of the associated fiber bundle

with typical fiber γ ∪ {eγ}. Now X(P) = X ∪ e(P) where e(P) is a copy of R

associated with p which parametrizes the geodesics converging to p. Take X̄
to be

⋃
P X(P) where P ranges over all proper Q-parabolic subgroups.

Given a point and an open interval y ∈ V ⊆ e(P), the restriction of a cross-

section of the principal bundle qP to V determines a neighborhood of y in

X(P) defined by geodesic influx from V into X which consists of all points on

geodesics connecting the image of the cross-section to V (including the latter

but not the former). This description makes it clear that X̄ is a Hausdorff

space. Every g ∈ G acts as a Möbius transformation on X and sends a geodesic
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converging to a rational point to another hyperbolic geodesic. If g ∈ Γ ⊆
SL2(Q) then the new geodesic converges to a rational point and thus defines

g ·y ∈ ∂X̄.

Corners for SL3. Choose the maximal compact subgroup K = SO3(R) in G =
SL3(R), let P0 be the Borel Q-subgroup of G consisting of the upper triangular

matrices, and let T0 be the torus of diagonal matrices denoted by diag(ti). Now

A0 = {diag(ti) ∈ T0 : ti > 0} is the split component of T0 which is stable with

respect to the Cartan involution θK . Let Φ be the set of roots of the Lie algebra

gC of G determined by the Cartan subalgebra aC. Since G = SL3 is split over Q,

we may identify Φ and ΦR. Choose an ordering on Φ so that the weights of a are

positive. The set of simple roots with respect to this ordering is ∆ = {α1, α2},
where αi denotes the usual mapping ti/ti+1 on T0.

The conjugacy classes of parabolic Q-subgroups of G are parametrized by

subsets J of ∆. In particular, if Q is a maximal parabolic Q-subgroup, then it

is conjugate to a standard maximal parabolic Q-subgroup Pj given by

Pj = P∆−{αj} = {(aij) ∈ G : aik = 0, k ≤ j < i}, j = 1,2.

So the standard parabolic subgroups in G are either P0 or one of

P1 =






a11 a12 a13

a21 a22 a23

0 0 a33


 ∈ G


 or P2 =






a11 a12 a13

0 a22 a23

0 a32 a33


 ∈ G


 .

Using

T∆−{αj} =

 ⋂

αi∈∆,i6=j
kerαi




0

,

we have Pj = Z(T∆−{αj}) ·NPj . If Aj is the θK-stable split component of Pj in

the radical of Pj , and Mj = 0Lj , where Lj = Z(Aj) is the Levi subgroup, then

we get the Levi decomposition Pj = Mj · Aj · Nj . Explicitly, for the standard

Borel subgroup P0 we have

M0 = {diag(ti) : ti = ±1}, N0 =







1 n12 n13

1 n23

1


 ∈ G


 .

For the maximal standard parabolic subgroups

M1 =
{(
F

ε

)
∈ G : F ∈ SL±2 (R), ε = ±1

}
,

where

SL±2 (R) =
{(
a b
c d

)
: a,b, c, d ∈ R, det = ±1

}
,

and

M2 =
{(
ε

F

)
∈ G : F ∈ SL±2 (R), ε = ±1

}
.

The other groups in the corresponding decompositions are:

A1 =






a−1

a−1

a2


 ∈ G : a ∈ (R∗)+


 , N1 =







1 0 n3

1 n2

1


 ∈ G


 ,
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A2 =






b2

b−1

b−1


 ∈ G : b ∈ (R∗)+


 , N2 =







1 n1 n3

1 0

1


 ∈ G


 .

Denote by I3 the 3× 3 identity matrix and put

d1 =



−1

−1

1


 , d2 =




1

−1

−1


 ,

then, for i = 1,2,Mi consists of two connected components: M1 = {d2, I3}×M0
1

and M2 = {d1, I3} ×M0
2 with M0

i � SL2(R).
In this case rankQG = 2, so the Tits building is a graph whose vertices are

the points and lines of the projective plane over Q, and edges are the set of

incidence relations among them. If the orbit of A0 is identified with the first

plane quadrant, then Ā0 is the corner with interior A0. The orbits of A1 and A2

are the horizontal and vertical lines inA0. The space e(P0) intersects each Ā0 at

its vertex, while e(Pi), i = 1,2, intersect Ā0 in the vertical and horizontal lines of

its boundary. Fixing a vertexW(P) letC range over all chambers havingW(P) as

an endpoint, i.e., over allW(B) for BorelQ-subgroups B < P . These are indexed

by the projective line overQ. The corresponding 3-dimensional strata e(B) are

disjoint in the boundary of the 4-dimensional space e(P). Everywhere in this

paragraph the fieldQmay be replaced byR. The resulting combinatorial object

T3(R) is dual to the combinatorics of the maximal Satake compactification of X
rather than the noncompact rational enlargements of Borel–Serre and Satake.

Topological Properties. Recall that there is a continuous map µ : X̄R → X̄
ρ
R

where the reductive Borel–Serre enlargement X̄
ρ
R coincides with the maximal

Satake compactification XS of X, cf. [22], Remark 7.12. For G = SL3 the map µ
is the identity onX3 and projects each e(gPig−1) � ê(gPig−1)×Ru(gPig−1)(R),
i = 1, 2, onto the first factor. Using the comparison with the maximal Satake

compactification, the space X̄
ρ
R is certainly compact and Hausdorff. We will

also need to use its homological triviality.

Theorem 2.11. The space XS is Chogoshvili-acyclic.

Proof. Recall that the Chogoshvili homology theory is the unique extension of

the Steenrod–Sitnikov homology to compact Hausdorff spaces from the cat-

egory of compacta satisfying the three axioms of Berikashvili (see [8, §4.3,

§11.3]). So XS needs to be Steenrod-acyclic. We denote the Steenrod–Sitnikov

homology by H∗( ). We will use the following version of the Vietoris–Begle

theorem.

Lemma 2.12 (Nguen Le Ahn [16]). Let f : X → Y be a continuous surjective map

of metrizable compacta so that

H̃i(f
−1(y);G) = 0

for all y ∈ Y , i ≤ n. Then if G is a countable group, the induced homomorphism

Hq(f ) : Hq(X;G) -→ Hq(Y ;G)

is an isomorphism for 0 ≤ q ≤ n and an epimorphism for q = n+ 1.
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According to [12, Theorem 1], XS is homeomorphic to the Martin compact-

ification XM(λ0) of X at the bottom of the positive spectrum λ0. There is

also the Karpelevǐc compactification XK [14] which is defined inductively and

maps equivariantly onto XM(λ0) (see [12, Theorem 4]). Lemma 2.12 applies to

this map f : XK → XM(λ0) because the fibers of f are easily seen to be gen-

uinely contractible using the result of Kushner [15] that XK is homeomorphic

to a ball. The same result applied to XK itself shows that all of the spaces in

Dn � XK → XK(λ0) � XS are Chogoshvili-acyclic. 5

3. Compactification of X3

This new compactification of the symmetric space X3 is different from the

classical compactifications in that it also contains the Borel–Serre enlargement

EΓ = X̄Q ⊆ X̄R as an open dense subspace.

The nature of the construction is inductive. The truly basic case is that of

the one-dimensional Lie group L = R acting on itself by addition. The associ-

ated symmetric space is L, and the equivariant compactification we want is the

obvious completion L̂ = L∪ {−∞,+∞}.
Next, we deal with corners of hyperbolic disks, as in section 2. Consider the

standard parabolic R-subgroup P0 of G = SL2. The corresponding reductive

stratum in X̄
ρ
R is a point, and

e(P0) � RuP0(R) =
{(

0 x
0

)
: x ∈ R

}
� L.

A proper parabolic subgroup P ⊆ SL2 stabilizes a point p(P) ∈ ∂E and per-

mutes the geodesics abutting to p(P). The stratum e(P) � L parametrizes

those geodesics. Complete each stratum as ε(P) � L̂. The resulting set is X̂ in

which every corner X(P) is declared to be open. So typical open neighborhoods

of z ∈ e(P) in X̂ are the open neighborhoods of z in X(P). Given a line e(P)
and one of its endpoints y , a typical open neighborhood of y consists of

• y itself and an open ray in e(P) asymptotic to y ,

• an open (Euclidean) set U in E bounded by the hyperbolic geodesic γ
abutting to p(P) representing the origin of the ray in e(P)—the one

which is the union of geodesics representing other points of the ray,

• points in various e(B), B ∈ PR, such that p(B) is on the arc in ∂E con-

necting p(P) with p(R), the opposite end of γ, which are represented

by geodesics with a subray inside U ,

• each endpoint of the corresponding ε(B) if B 6= P , R, and

• the endpoint of ε(R) which is the limit of a ray in e(R) contained in the

set from (3).

This choice generates a well-defined topology consisting of subsets which

contain a neighborhood of each of its members. For example, the intersection

of finitely many rays {ρi} ⊆ ε(P) converging to the same end y of ε(P) is

the smallest ray, and the corresponding neighborhood of y is the intersection

of the neighborhoods determined by {ρi}. In other words, the totality of all

neighborhoods constructed above forms a base.

With the topology on X̂ generated as above, the subspace X ⊆ X̂ has the

hyperbolic metric topology, and δX = X̂ −X is simply S1 × I with an analogue

of the lexicographic order topology, see Example 6.2.7 in [8] for a complete
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description. An interesting property is that δX is compact but not separable

and, therefore, not metrizable.

Minimal Borel–Serre strata. For a torsion-free arithmetic subgroup Γ of G(Q)
and any rational Borel subgroup B, Γ ∩B(Q) is the largest subgroup which acts

in e(B). It is a cocompact nilpotent discrete subgroup Γ ∩ NB of the nilpo-

tent component NB in the Langlands decomposition of B(R). Indeed, for the

standard Borel subgroup P0 of G = SL3 and N0 = NP0 , Γ ∩ N0 is the discrete

Heisenberg group, andN0/Γ0 is the compact 3-dimensional Heisenberg nilman-

ifold.

As in the construction of X̂(SL2), we first compactify each e(B), B ∈ BR,

ΓB = Γ ∩ B(R)-equivariantly, then provide the new points with neighborhoods

which form a part of the basis for the topology on X̂. In fact, it suffices to

compactify e(P0) and extend the construction equivariantly to other strata.

Recall that e(P0) can be identified with N0 (Remark 2.6) and that Γ0 acts on

N0 via left multiplication (Lemma 2.9). The discrete Heisenberg group Γ0 has

the well-known presentation

Π = 〈a,b, c | aca−1c−1, bcb−1c−1, caba−1b−1〉.
This is the simplest example of a discrete nilpotent but non-abelian group. Each

element ofΠ can be written uniquely in the form ambkcl, and the identification

of Π with the subgroup Γ0 ⊆ N0 is given by the mapping

ambkcl 7 -→




1 m l
1 k

1


 .

Γ0 contains two subgroups

M =







1 m 0

1 0

1





 � Z and L =







1 0 l
1 k

1





 � Z

2.

M acts on L by

m · z =mzm−1 = (k, l+mk)
for m ∈ M and z = (k, l) ∈ L making Γ0 into the semidirect product of M and

L with multiplication

(m,z) · (m′, z′) = (m+m′, z +m · z′).
Systematizing the convenient notation, let us denote the matrix


1 x z

1 y
1


 ∈ N0

by the ordered triple (x,y, z). In this notation the action of Γ0 on N0 is given

by

(m,k, l) · (x,y, z) = (m+ x,k+y, l+ z +my).
A fundamental domain for this action is

D = {(x,y, z) ∈ N0 : 0 ≤ x,y, z ≤ 1}.
Definition 3.1. Let ε(P0) = N0∪∂N0 be the ideal compactification of e(P0) = N0

viewed as the Euclidean space {(a, b, c)} = R3 with the standard flat metric.
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A straight line in the flat space N0 can be expressed in terms of our coordi-

nates as (x1 + x2t,y1 + y2t, z1 + z2t) with the parameter t ∈ R. Now Γ0 acts

on the set of such lines:

(m,k, l) · (x1 + x2t,y1 +y2t, z1 + z2t) =
(m+ x1 + x2t, k+y1 +y2t, l+my1 + z1 + (my2 + z2)t).

From this equation we see that the parallelism class of lines with x2 = y2 = 0

is invariant under Γ0. The same is true for the class of lines with y2 = z2 = 0.

Observe that this left action extends to the ideal boundary of N0—the points in

∂N0 corresponding to the two opposite directions of the line (0,0, t) are fixed

by Γ0, and the open meridian semicircles connecting the two points are orbits.

The action is continuous since the coefficients at t are degree one polynomials

in the coordinates of the directional vector (x2, y2, z2).
The right action of Γ0 on lines is given by

(x1 + x2t,y1 +y2t, z1 + z2t) · (m,k, l) =
(m+ x1 + x2t, k+y1 +y2t, l+ kx1 + z1 + (kx2 + z2)t).

Notice that the same poles with x2 = y2 = 0 get fixed. Also, the sets of equiva-

lence classes with either x2 = 0 or y2 = 0 are invariant under the right action.

In fact, all right Γ0-orbits in the former set are points.

Definition 3.2 (Cubical Cellular Decompositions). Let I3 = [−1,1]3 be the 3-

dimensional cube embedded in R3. It has eight vertices indexed by various

triples with entries either 1 or −1. Let us denote this set by V(−1). We also say

that V(−1) is derived from I(−1) = {±1} and write this as V(−1) = I3(−1). Now

define the following subsets of I:

I(0) = {−1,0,1}, I(1) =
{
−1,−1

2
,0,

1

2
,1

}
, . . .

where

I(i) =
{
−1, . . . ,

k

2i
,
k+ 1

2i
, . . . ,1

}
, k ∈ Z, −2i ≤ k ≤ 2i,

for i ∈ N. We also get the corresponding derived subsets of I3:

V(0), V(1), . . . , V(i) = {vi(s1, s2, s3)} = I3(i), . . .
where

vi(s1, s2, s3)
def=
(
s1
2i
,
s2
2i
,
s3
2i

)
, sj ∈ Z, −2i ≤ sj ≤ 2i.

At each stage V(i) is the set of vertices of the obvious cellular decomposition

of I3, where the top dimensional cells are 3-dimensional cubes with the j-th
coordinate projection being an interval

[
kj
2i
,
kj + 1

2i

]
⊆ I, 1 ≤ j ≤ i.

These cells can be indexed by the triples {(k1, k2, k3) : −2i ≤ kj < 2i}, the

coordinates of the lexicographically smallest vertex, 23(i+1) triples at all.

These decompositions behave well with respect to the collapse performed

in the boundary of the cube I3 which contracts faces

{(x1,∗,∗) ∈ I3 : x1 = ±1} -→ (±1, [, [).
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The result is a topological ball B3 with the CW-structure consisting of two cells

of dimension 0, four cells of each dimension 1 and 2, one 3-dimensional cell

and a continuous collapse ρ : I3 → B3. Notice that every old derived cubical

CW-structure in I3 induces a CW-decomposition of the image in the obvious

way.

The right action of N0 or Γ0 on ∂N0 fixes the poles with x2 = y2 = 0, and

the circles of points with x2 = 0 or y2 = 0 are themselves invariant sets. In

particular, the four open arcs complementary to the fixed poles are invariant,

and the four connected components of the complement to the circles are also

invariant. Consider the (−1)-st derived decomposition of I3 and the corre-

sponding CW-structure in B3. The cells in ∂B3 are in bijective correspondence

with the invariant cells just described. We will refer to this isomorphism of

CW-structures as Υ : ∂B3 → ∂N0.

There are cubical analogues of links and stars of the usual simplicial notions.

Thus the star of a vertex is the union of all cells which contain the vertex in

the boundary. The open star is the interior of the star. For the i-th derived

cubical decomposition, the open star of the vertex vi(s1, s2, s3) will be denoted

by Staro
(
vi(s1, s2, s3)

)
. These sets form the open star covering of I3.

By vertices in ∂N0 we mean the image Υρ(V(n)∩∂I3). Let v ∈ Υρ(V(n)∩∂I3)
then

Staro
(
(Υρ)−1(v)∩ V(n)

) =
⋃
vn ∈ V(n)Υρ(vn) = v Staro(vn)

is an open neighborhood (the open star) of (Υρ)−1(v), and, in fact,

Staro
n(v)

def= Υρ
(
Staro(ρ−1

Υ
−1(v)∩ V(n))

)

is an open neighborhood of v which we call the open star of v . The map Υρ is

bijective in the interior of I3, so Staro
n(v) can be defined by the same formula

for v ∈ Υρ(V(n) ∩ intI3).

Maximal Borel–Serre Strata. We proceed to ΓPi -equivariantly enlarge each of

e(Pi), i = 1,2. Recall the projection map

µPi : e(Pi) = RuPi(R)× ê(Pi) -→ ê(Pi).
Proposition 3.3. For each P ∈ PR(G), the principal RuP(R)-fibration µP extends

to a principal fibration

µ̄P : e(P) -→ ê(P).
Proof. This can be seen from [2, §§2.8, 3.10, 5.2, 7.2(iii)]. Let Q ⊆ P be proper

parabolic subgroups with unipotent radicals RuQ ⊇ RuP , then Q determines a

parabolic subgroup

QP = πP(Q) = Q/RuP ⊆ L̂P = P/RuP
with unipotent radical RuQP = RuQ/RuP . Now AQP is canonically identified

with AP,B (in the notation of Borel and Serre), and the geodesic actions of AQ
on e(P) and ê(P) commute with µP . So XP(Q) is a principal RuP(R)-bundle

over XL̂P (Q
P), and the projection τQ : XP(Q) → XL̂P (Q

P) extends µP . These

fibrations τ∗ are compatible with the order in the lattice P(P) in the sense that

for each pair Q1 ⊆ Q2 ⊆ P the restriction of τQ1 to e(Q2) is the projection of a

principal RuP(R)-fibration with base e(QP2 ). So the principal fibrations τ∗ are

also compatible with the inclusions X(Q2) ↩ X(Q1) and match up to give a

principal fibration for e(P) over ê(P). 5
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The real version

µ̄P,R : e(P)R -→ ê(P)R
of the principal fibration µ̄P has the related product structure which extends

µ̄P . The total space e(Pi)R is the first partial enlargement of e(Pi).
The other enlargement is obtained by compactifying each flat fiber of the

principal fibration µPi with its ideal boundary. In other words, we embed e(Pi)
in

ε(Pi)
def= ε

(
RuPi(R)

)× ê(Pi).
The formula from Lemma 2.9 shows that Pi(R) acts on e(Pi) by bundle auto-

morphisms. It can be used to see that in general the action extends to ε(Pi). In

our low-dimensional situation, the following concrete calculation may be more

satisfying.

Proposition 3.4. The inclusion

e(P1) ⊆ ε
(
RuP1(R)

)× ê(P1)

is a P1(R)-equivariant enlargement.

Proof. The added points are the parallelism classes of rays in fibers of µPi . We

are going to check that the bundle automorphisms from P1(R) map lines to

lines in a way which preserves the parallelism relation and that the formulae

for the action are polynomial.

A line in the µPi -fiber over ẑ = zK̂P1ÂP1 can be parametrized as

({ut}, ẑ) =
({0, y1 +y2t, z1 + z2t)}, ẑ

) ⊆ RuP1(R)× {ẑ}.
An element g ∈ P1(R) maps the fiber to RuP1(R) × {µP1(g) · ẑ}. If g = (gij),
1 ≤ i, j ≤ 3, g31 = g32 = 0, then

g · (0, y1 +y2t, z1 + z2t) · g−1 =
(
0, g11z1 + g12y1 + (g11z2 + g12y2)t, g21z1 + g22y1 + (g21z2 + g22y2)t

)
.

The RuP1(R)-coordinate of g · (ut , ẑ) is given by gutg−1 ·gτxµP1(g
−1), where

gτxµP1(g
−1) ∈ RuP1(R). Since the right multiplication in RuP1(R) is simply

the coordinatewise addition, g · (ut , ẑ) is a line with the slope coefficients de-

pending polynomially only on y2 and z2. 5
Proposition 3.5. The inclusion

e(P2) ⊆ ε
(
RuP2(R)

)× ê(P2)

is a P2(R)-equivariant enlargement.

Proof. The proof is identical to that of Proposition 3.4 but the formulae are

different. This reflects the non-symmetric equivariance in the corner associated

to P0. If g = (gij), 1 ≤ i, j ≤ 3, g21 = g31 = 0, and

ut = (x1 + x2t,0, z1 + z2t) ∈ RuP2(R),

then

gutg
−1 = g11

(
g33

D
(x1 + x2t)− g32

D
(z1 + z2t),0,

g22

D
(z1 + z2t)− g23

D
(x1 + x2t)

)
,

where D = g22g33 − g23g32. 5
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Notation. We will treat the two maximal standard proper parabolic subgroups

P1 and P2 simultaneously using notation P for either of them. Correspondingly,

the notation that appeared heretofore with the subscripts 1 and 2 is used with-

out a subscript.

The closures of proper Borel–Serre strata for SL2 are disjoint in the boundary

of X̂R(SL2), and so are the closures of the strata in e(P)R − e(P), where P(R)
operates by automorphisms. It also acts on the disjoint union of the ideal

compactifications ε(B), i.e., on

δ(P)
def= ε(P0)×P0(R) P(R).

Definition 3.6. Define the set e(P)̂= ε(P)t δ(P).
The topology in e(P)̂ can be introduced by specifying the neightborhoods

of each individual point.

Definition 3.7. The space ε(P) has the product topology. For y ∈ ε(P) let

N (y) = {O ⊆ e(P)̂ : O contains an open neighborhood of y in ε(P)}.
Also, e(P)R ⊆ e(P)̂ is the Borel–Serre construction over R and has topology in

which each corner X(B), B ∈ PR(P), is open. For y ∈ e(P)R let

N (y) = {O ⊆ e(P)̂ : O contains an open neighborhood of y in e(P)R}.
Notation. Given an open subset U ⊆ ε(B), let O(U) = q−1

P,B(V), the total space

of the restriction to V = U ∩ e(B) of the trivial bundle qP,B over e(B) with fiber

AP,B . If U is any open subset of δ(P), let

O(U) =
⋃

B∈PR
O(U ∩ e(B)).

Let y ∈ ∂e(B). Recall the map p : e(P)̂→ εX(M0). If U is any open subset

of δ(P), define

C(U) ={z ∈ ε(P)∪ e(P)R : ∃ O ∈N (z) such that O∩ e(P) ⊆ O(U)}∪
{z ∈ δ(P)\e(P)R : ∃ open U ′ ⊆ δ(P) such that z ∈ U ′ and O(U ′) ⊆ O(U)}

and let

N (y) = {O ⊆ e(P)̂ : ∃ open set U ⊆ δ(P) with y ∈ U and

∃ open set V ⊆ εX(M0) with C(U)∩ p−1V ⊆ O}.
This defines a system of neighborhoodsN (y) for every y ∈ e(P)̂.

For a subset S ⊆ e(P)̂, let N (S) = {O ⊆ e(P)̂ : O ∈ N (y) for every

y ∈ S}. We call S open if S ∈ N (S). It is routine to check that the open

subsets of e(P)̂ form a topology. It is also easy to see that X̂(P) is compact

Hausdorff and Čech-acyclic as in section 2.

Definition of X̂(SL3). The conjugation action of SL3(R) permutes the Borel–

Serre strata associated to the three standard proper parabolic subgroups Pi,
i = 0, 1, 2. Each stratum may be compactified as in Definitions 3.1 and 3.6.

Denoting ε(P0) by e(P0) ,̂ define

Yi = e(Pi)̂×Pi(R) SL3(R).
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Since e(P0)̂⊆ e(P1)̂, e(P0)̂⊆ e(P2)̂, we have Y0 ⊆ Y1, Y0 ⊆ Y2 and can form

δ(X3)
def= Y1 ∪Y0 Y2.

Definition 3.8. X̂ = X̄R ∪ δX = X t δX.

The space X̄R is the Borel–Serre construct and has the topology in which each

corner X(P) is open. For y ∈ X̄R let

N (y) = {O ⊆ X̂ : O contains an open neighborhood of y in X̄R}.
Given a maximal parabolic R-subgroup P and an open subset U ⊆ e(P)̂, let

O(U) = q−1
P (V), the total space of the restriction to V = U ∩ e(P) of the trivial

bundle qP over e(P) with fiber ÂP . If U is any open subset of δX, let

O(U) =
⋃

B∈PR
O(U ∩ e(P)).

Notation. Let y ∈ ∂e(B) for some B ∈ BR and let P , Q ∈ PR such that B ⊆
P , Q. Then for any open neighborhood Ω of y in δX, Ω ∩ ε(B) contains an

open neighborhood U of y in ε(B) such that q−1
P (V) ∪ q−1

Q (V) ⊆ Ω, where

V = U ∩ e(B), and qP : e(P) → e(B) and qQ : e(Q) → e(B) are the associated

bundles with fibers Â(P, B) and Â(Q, B) respectively. The point is that

O(V ∪ q−1
P (V)∪ q−1

Q (V)
) = q−1

B (V).

It is convenient to denote this set also by O(U) even though U ⊆ ε(B) is not

open in δX.

Let U be again an open subset of δX. Define

C(U) ={z ∈ X̄R : ∃ O ∈N (z) such that O∩X ⊆ O(U)}∪
{z ∈ δX\X̄R : ∃ open U ′ ⊆ δX such that z ∈ U ′ and O(U ′) ⊆ O(U)}.

Now for y ∈ δX\X̄R let

N (y) = {O ⊆ X̂ : ∃ open set U ⊆ δX containing y with C(U) ⊆ O}.
This defines a system of neighborhoods N (y) for any y ∈ X̂. For a subset

S ⊆ X̂ let N (S) = {O ⊆ X̂ : O ∈ N (y) for every y ∈ S} and call S primary

open if S ∈ N (S). The following is again easy to check.

Proposition 3.9. The primary open subsets of X̂ form a topology.

Definition 3.10. Let X̂1 be the set X̂ with the primary topology.

Remark 3.11. The primary topology on X̂1 is not Hausdorff. This has to do

with the rank of SL3. Recall that each maximal 2-dimensional flat consists

of six chambers and six walls. Pick two walls which are in opposition: they

lie on a geodesic γ through the base point and determine two walls W(P1),
W(P2) at infinity. If z1 = qP1(γ) ∈ e(P1) then let zu1 ∈ RuP1(R) be the first

coordinate projection of F−1(z) (in the notation of Proposition 2.8). The point

zu2 ∈ RuP2(R) is defined similarly. The two points are the limits of γ in X̄. It

turns out that the points of {zu1 } × ê(P1) and {zu2 } × ê(P2) match bijectively in

this manner.

By Proposition 3.3 the principal RuP(R)-fibration µP extends to µ̄P,R. Since

each level is compactified as the hyperbolic disk in the beginning of the section,

{zui } × ê(Pi), i = 1,2, embed in the closures of the corresponding strata. It is
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now easy to see that the bijective correspondence described above extends

to these enlargements and to find points yi ∈ {zui } ×
(
ê(Pi) − ê(Pi)

)
so that

any two neighborhoods of y1 and y2 in the respective enlargements contain

some points xi ∈ {zui }× ê(Pi) which are matched. Equivalently, y1 and y2 are

inseparable in X̂1.

There is the obvious set projection p : X̂ -→ XS extending µ from Defini-

tion 2.10. This map should be identity on X and contract each conjugate of

ε(P0). The complement consists of the conjugates of ε(P1) and ε(P2) which

are projected onto the corresponding conjugates of the strata ê(P1) and ê(P2)
fiberwise.

Definition 3.12. The secondary topology on X̂ is thep-pull-back of the topology

on XS . Let X̂2 be the resulting topological space.

The secondary topology is again non-Hausdorff. By the product of two

topologies on a set we mean the one generated by the union of bases for each

topology.

Definition 3.13. Let X̂ be the space topologized by the product of the primary

and secondary topologies on the set X̂.

4. Properties of the Compactification

Hausdorff property. For x1, x2 ∈ X̂, if p(x1) = p(x2) ∈ XS then either x1,

x2 ∈ p−1(y) for some y ∈ XS − X or x1 = x2 ∈ X. Now each p−1(y) is

Hausdorff, so the points are separated in the primary topology. If p(x1) 6=
p(x2) ∈ XS then the points are separated in the secondary topology.

Calculus of flats. In order to determine the geometry of open sets in X̂, we

need to study the geometric question: describe the family of flats asymptotic to

the given two chambers or walls at infinity of a symmetric space X. The answer

is quite natural in terms of horocycles.

Theorem 4.1 (Im Hof [13]). If y , z ∈ ∂X are contained in Weyl chambers W(y),
W(z) ⊆ ∂X, let Ny , Nz be the nilpotent components in the corresponding Iwa-

sawa decompositions. For an arbitrary point x ∈ X the intersection of the horo-

cycles Ny ·x ∩Nz ·x parametrizes the set of all flats asymptotic to both W(y)
and W(z).

Now the minimal strata e(B) for B ∈ BR parametrize the flats which are

asymptotic to W(B).

Definition 4.2. Define the subsets A(B, B′) ⊆ e(B) to be the geodesic projec-

tions qB(NB · x ∩NB′ · x) in the sense that they consist of a ∈ e(B) such that

the flat q−1
B (a) is asymptotic to W(B′).

This parametrization is more convenient for us because each ξ ∈ e(B) is

precisely the point of intersection e(B) ∩ q−1
B (ξ) = {ξ}. Now given an open

subset U ⊆ e(B), the corresponding open set C(U) ⊆ X̂ can be described as

�
(
clq−1

B (�U)
)
, and q−1

B (�U) can be identified once the closure of each flat

q−1
B (ξ), ξ ∉ U , is known. This is easy to do for X = X(SL3).

Let W(B), W(B′) be two adjacent Weyl chambers at infinity in ∂X(SL3), i.e.,

there exists P ∈ PR\BR with B, B′ ⊆ P . Using the product structure on X̄R(P)
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and the fact that γξ = e(P) ∩ cl
(
q−1
B (ξ)

)
are geodesics for each ξ ∈ e(B), we

see that the collection of flats which are asymptotic to bothW(B) andW(B′) is

parametrized by A(B, B′) = µ̄−1
P,R(y) ⊆ e(B), where y ∈ e(BP) is the endpoint

of the well-defined hyperbolic geodesic p(γξ) ⊆ f(P) connecting f(B) with

f(B′). In other words,A(B, B′) is precisely the set of such ξ ∈ e(B).
Now let W(B), W(B′) be two Weyl chambers at infinity which are neither

adjacent nor in opposition (that is, do not contain ideal points represented

by the opposite orientations of the same geodesic). This determines unique

chamber W(B′) and walls W(P), W(P ′) with B′ = P ∩ P ′, B < P , B′′ < P ′. So

each flat asymptotic to W(B) and W(B′′) will be also asymptotic to W(B′), and

A(B, B′′) ⊆ A(B, B′). Indeed, A(B, B′) are points in the plane µ̄−1
P,R(y). Let z

be the other end of the geodesic p(γξ). There is a bijective correspondence

A(B′, B) = µ̄−1
P,R(z)�A(B, B′).

On the other hand, {z} = f(P)∩ f(P ′), and

A(B′, B′′) = µ̄−1
P ′,R(z)�A(B′′, B′).

Now µ̄−1
P,R(z) and µ̄−1

P ′,R(z) are two transverse planes in e(B′) intersecting in a

line L. It is clear that there are bijections

A(B, B′′)� L�A(B′′, B).
In terms of coordinates (x,y, z) in e(B) induced from e(P0),A(B, B′′) is a line

(x,y,∗) with one of the coordinates x or y determined by the choice ofW(B′)
adjacent to W(B), the other—by the choice of W(B′′) adjacent to W(B′).

Similarly, on one hand, each point inA(B, B′′) uniquely determines a cham-

berW(B(3)) adjacent toW(B′′), on the other—it determines a unique flat which

is, therefore, the unique flat asymptotic to bothW(B) andW(B(3)). This verifies

Proposition 4.3. Given B, B′ ∈ BR(SL3), the flats which are asymptotic to both

W(B) and W(B′) are parametrized by

A(B, B′) σ
�A(B′, B).

If S ⊆A(B, B′) then σ(S) ⊆A(B′, B) is contained in the closure cl
(
q−1
B (S)

)
.

In view of the discussion above, using the product structures in X̂(P), we

can determine the geometry of C(U) for an open subset U ⊆ ε(B).
Proposition 4.4. If B, B′ ∈ BR(SL3) and U ⊆ ε(B) is an open subset then

y ∈ ε(B′) is contained in C(U) if and only if either

(1) y ∈ e(B′) and its orthogonal projection πB onto A(B′, B) is not con-

tained in the subset AB(U) corresponding bijectively to U ∩ A(B, B′),
or

(2) y ∈ ∂e(B′) and y ∉ cl
(
π−1
B AB(U)

)
.

The intersections of C(U) with ε(P), P ∈ PR\BR, are the obvious open product

subsets.

From this description easily follows

Proposition 4.5 (Weak Summability). Given arbitrary open subsets U1 and U2 ⊆
ε(B), it may not be true that

C(U1 ∪U2) = C(U1)∪C(U2).
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However, the open stars in any derived decomposition of ε(B) from Definition

3.2 do have this property.

Corollary 4.6. Given a finite collection of open subsets Ω1, . . . ,Ωn ⊆ X̂ with

ε(B) ⊆ ⋃Ωi there is another finite collection of open subsets U1, . . . , Um ⊆ ε(B)
so that

• ε(B) ⊆ ⋃Uj ,
• ∀ 1 ≤ j ≤m ∃ 1 ≤ i ≤ n with C(Uj) ⊆ Ωi,
• C(⋃Uj) =

⋃C(Uj).

Compactness. It can be shown that X̂1 is compact using [8] where summability

was used implicitly as it holds obviously in the rank one case. However com-

pactness of X̂1 and X̂2 alone does not imply compactness of X̂. This will follow

from

Lemma 4.7. For each y ∈ XS −X and any open neighborhood U of π−1(y) in

X̂ there exists an open neighborhood V of y such that π−1(y) ⊆ U .

Proof. The topology in XS can be described by making a sequence convergent

if and only if it converges to a maximal flat and its projection onto the flat

converges in Taylor’s polyhedral compactification [12, 20].

Suppose y = f(B) for some B ∈ BR. Then U is a neighborhood of ε(B) ⊆ X̂.

We know from Corollary 4.6 that there is a neighborhood M of ∂e(B) ⊆ ε(B)
and a section σ : e(B)→ X of qB so that

N(B) := C(M)∪W(e(B),σ ,0) ⊆ U,
and the closure of the complement of N(B) does not intersect ε(B). In partic-

ular, this means that for each flat F asymptotic to W(B),

W(B) ∉ F ∩N(B).
If λi is a sequence in π

(
�N(B)

) ⊆ XS converging to f(B) then there is a se-

quence φi with the same limit contained in a flat asymptotic to f(B). The

preceding discussion shows that φi would lift to a sequence (φi itself!) con-

verging to W(B) which is impossible. So the closed set

π
(
�N(B)

)∩ f(B) = ∅.

Now any neighborhood of f(B) in�π
(
�N(B)

)
will do as V . A simpler argument

works for y ∈ intf(Pi), i = 1 or 2. 5

LetU be an arbitrary open covering of X̂. Since π−1(y) is compact for each

y ∈ XS , let Uy,1, . . . , Uy,ny be a finite collection of elements of U with

π−1(y) ⊆
ny⋃

i=1

Uy,i.

By Lemma 4.7 there is Vy such that

π−1(Vy) ⊆
ny⋃

i=1

Uy,i.
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By compactness of XS there is a finite collection of points y1, . . . , yk with XS =
Vy1 ∪ · · · ∪ Vyk . Then

X̂ =
ny1⋃

i=1

Uy1,i ∪ · · · ∪
nyk⋃

i=1

Uyk,i.

Čech-acyclicity.

Definition 4.8. The modified Čech homology of a space Z with coefficients in

S is the simplicial spectrum valued functor

ȟ(Z ;S) = holim←−−−−
CovZ

(N ∧ S),

where CovZ is the category of finite rigid open coverings of Z defined in [3].

This is a generalized Steenrod homology theory.

Thus X̂ being Čech-acyclic is equivalent to weak triviality of the homotopy

inverse limit

ȟ(X̂;KR) = holim←−−−−
U∈CovX̂

(NU∧KR).

Theorem 4.9. If f : X → Y is a surjective continuous map, where Y and f−1(y)
are Chogoshvili-acyclic for each y ∈ Y and for any abelian coefficient group,

then

f̌ : ȟ(X;KR) -→ ȟ(Y ;KR)

is a weak homotopy equivalence. So both X and Y are Čech-acyclic.

Proof. Apply the weak Vietoris–Begle theorem for the modified Čech theory [8,

Theorem 11.3.1]. The fibers need only be Chogoshvili-acyclic for the result of

Inassaridze used in that proof. 5
Now the fibers of p : X̂ → XS are either points, disks, or closures of max-

imal Borel–Serre strata which are all Chogoshvili-acyclic by the theorem of

Inassaridze and induction. Since XS is Chogoshvili-acyclic by Theorem 2.11,

Theorem 4.9 applies to p, and X̂ is Čech-acyclic.

5. Proof of the Theorem

The general plan of the proof is common with [3, 4, 8, 9] which is to interpret

the assembly map α as the Γ -fixed point map between two Γ -spectra

BΓ+ ∧K(R) α(Γ)
----------------------------------------------------------------------------------------------------------------------------→ K(RΓ)

'
y '

y

RΓ
π Γ∗

----------------------------------------------------------------------------------------------------------------------------→ T Γ

Here R is the locally finite homology of X̄Q with coefficients in K(R) and T is

the Čech homology spectrum Σȟ(Y ;K(R)). We refer to [4] for the proof of the

two equivalences in the diagram whenever Y is a boundary of the universal free

Γ -space EΓ satisfying a list of required properties. In our situation, X̄Q serves

as a model for EΓ , Y is the boundary in the compactification from section 3,

and all of the required properties were verified in section 4. The fixed point set
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map induces a map on homotopy fixed points and the following commutative

square

RΓ
π Γ∗

----------------------------------------------------------------------------------------------------------------------------→ T Γ

'
y

y

RhΓ πhΓ∗
----------------------------------------------------------------------------------------------------------------------------→ T hΓ

It is known that πhΓ∗ is a weak equivalence whenever π∗ : R → T is a weak

equivalence. This makes the assembly map α(Γ) the first map in a composition

which is a weak equivalence. It is then a split injection at the level of homotopy

groups.

In fact, this choice of the target T was fine enough only in [3]. In other cited

references the choice of the target had to be more refined. The idea is to replace

ȟ(Y ;K(R)) = holim←−−−−
CovY

N ∧K(R)

with a different homotopy limit over an equivariant category of covering sets

in the boundary Y so that there is a weak equivalence

θ : holim←−−−−
CovY

N ∧K(R) -→ holim←−−−−
A∈A

NA∧K(R)

In order for the limit to fit into the commutative diagram and serve as a new

targetT , the categoryA needs to satisfy a list of new conditions that we extract

from [8, 9].

Definition 5.1. For any subset K of a metric space (X,d) let K[D] denote the

set {x ∈ X : d(x,K) ≤ D}. If (X,d) is embedded in a topological space X̂ as

an open dense subset, a set A ⊆ Y = X̂ −X is boundedly saturated if for every

closed subset C of X̂ with C ∩ Y ⊆ A, the closure of each D-neighborhood of

C\Y for D ≥ 0 satisfies (C\Y)[D]∩ Y ⊆ A.

The required conditions onA are as follows.

(1) There is a subcategoryOrdY ofCovY such that the inclusion  : OrdY ↩
CovY induces a weak homotopy equivalence;

(2) For each set U = φ(y) for φ ∈ OrdY there is an open set V(U) ⊆ X̂
with the following properties: (1) V ∩ Y = U and (2) {V(U) : U ∈
imφ}OrdY form a cofinal system of finite coverings of Y by open sub-

sets of X̂;

(3) Given a covering φ ∈ OrdY , there is an assignment (which we call

saturation and denote by sat) of a based boundedly saturated subset

Ay ⊆ Y to each set φ(y) so that sat induces a natural transformation

sat∗ : N ∧K(R) -→ Nsat( )∧K(R),
and the collectionA above is precisely the result of applying saturation

to OrdY . We require the resulting collection to be excisive in the sense

defined in [4]. We require that each morphism sat∗ is a weak equiva-

lence of spectra by Quillen’s Theorem A applied to sat∗ : N → Nsat( ).

The rest of the proof consists of the construction of coverings of Y satisfying

the listed conditions.
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Partial Cellular Decomposition. The cells in ∂N0 described in Definition 3.2

make a symmetric picture in the standard corner where N0 � e(P0) is the base

of two geodesic bundles e(P1) and e(P2). There is a product structure in each

ε(P), P ∈ PQ\BQ, so that the closure of each lift of ê(P) in e(P)̂determines

a point in the appropriate meridian σj,B (depending on the type j of P ) for

each B < P . In e(Pj)̂ the lift to ξi × ê(Pj) determines a vertex in σj,P0 . The

complements in each of the two meridians are the 1-cells, and the complements

of the circles in ∂N0 are the 2-cells.

Similar decompositions are well-defined in other boundaries of Borel strata:

for each B ∈ BR with B < P ′, P ′′, e(B) � RuB(R) where RuP ′(R) and RuP ′′(R)
are subgroups isometrically embedded in the transported flat metric. Their in-

tersection is a geodesic converging to the two 0-cells and ∂RuP ′(R)∪∂RuP ′′(R)
is the 1-skeleton in ∂RuB(R). The 2-cells are the four connected components of

the complement. Now the derived cell structures in ε(B)may be introduced so

that the induced deriveds in ∂RuP(R) are compatible with the product struc-

tures in ∂RuP(R)× ε
(
ê(P)

)
.

Consider derived cubical decompositions of the unit square I2 and their

images under homeomorphisms πP : I2 → ε(ê(P)). The nerves of the open star

coverings of ε
(
ê(P)

)
or ê(P) are clearly contractible. We consider finite open

coverings Om,k,P of ε(P) by the products of open stars in (unrelated) cubical

decompositions of ∂RuP(R) and ê(P).

Let ξi,B and ϑ(t)j,B for i, j, t ∈ {1,2} be the two 0-cells and four 1-cells in ∂e(B)

(here t is the type of the adjacent maximal parabolic subgroup). Define

ςi,j,P =
(
ξi,B ∪ ϑ(t)i,B

)
× (ê(P))SQ,

where P is the maximal parabolic subgroup of type k containing B. It is clear

that this definition is independent of the choice of B < P .

Bounded saturation. The space X̂ contains X̄ as an open dense Γ -subset; in

particular, Γ acts continuously on X̄ as before.

Definition 5.2. The metric that we use in X̄ is a transported Γ -invariant metric.

It is obtained by first introducing any bounded metric in the compact X̄/Γ and

then taking the metric in X̄ to be the induced path metric where the measured

path-lengths are the lengths of the images in X̄/Γ under the covering projection.

Now we can identify a Boolean algebra of boundedly saturated sets fine

enough for our purposes.

Proposition 5.3. The following subsets of Y are boundedly saturated:

• each subset ςi,j,P for P ∈ PQ\BQ,

• each 2-cell in ∂e(B) for B ∈ BQ,

• each ε(P) for P ∈ PR\(PQ ∪PR).
Proof. For the purposes here, one can use commensurability inavariance of the

saturation property [8] and substitute the given group Γ with SL3(Z) and use

Grenier’s fundamental domain. A union T of this domain and a finite number

of its adjacent translates may be taken to intersect e(P0) in the domain D for

the discrete Heisenberg group action. If ω is chosen to contain the domain

D then the Siegel set Σ from Theorem 2.3 can be chosen (taking t ≥ 2/
√

3)

to contain T . In fact, the corresponding domain and set for the action of the
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torsion-free Γ is a union of appropriate translates of T and Σ respectively. Now

the domains are arranged so that one can isolate the candidates for boundedly

saturated sets using “barriers” literally as in section 8.4 of [8]. 5

Definition 5.4. The boundedly saturated sets identified in Proposition 5.3 gen-

erate a Boolean algebra of sets BA.

Orderly coverings. We will construct a cofinal family of finite open coverings

of Y . Recall that a rigid covering β ∈ CovY of Y consists of pairs x ∈ U(x)
where x ∈ Y and the values U(x) lie in a finite open covering of Y . Let U be

the underlying finite open covering imβ.

Fix a Borel subgroup B ∈ BR(SL3). There is a number `B ∈ N with `B ≥ nB
and an open neighborhood UB 3 f(B) in XS with

PreInf`B ,UB(v)
def= Y ∩C(Staro

`B
(v)

)∩ p−1UB ⊆ β(x)
for each v ∈ V(`B) and some x ∈ Y . Let I be the set consisting of all P ∈ PR\BR
such that f(P)∩ �UB 6= ∅. Let F consist of all B′ ∈ BR such that

A(B, P)∩ Staro
`B
(v) = ∅ and A(B, P)∩ Staro

`B
(v) 6= ∅.

Now we can define VB(U) ⊆ UB such that

UB\VB = UB ∩
⋃

B≮P∈I

f(P)

and

Inf`B ,UB(v)
def= PreInf`B ,UB(v)∩ p−1(VB)\

⋃

B′∈F

ε(B′).

The union of these sets over all v ∈ V(`B) is an open neighborhood of ε(B) in

Y by the weak summability property.

Using compactness of X̂, compactness of each e(P) ,̂ P ∈ PR(SL3), and rela-

tive compactness of ε(P), one can choose finite subsets B ⊆ BR and P ⊆ PR\BR
and numbers 0 <mP , kP ∈ N for P ∈ P satisfying

(1) ∀B ∈ B ∃P ∈ P such that B < P ,

(2) Y = ⋃B∈B Inf`B ,UB(v)∪
⋃
P∈P ε(P),

and the following properties: fix P ∈ P and use the notation B(P) := {B ∈ B :

B < P}, then

(3) for some 0 < kP ∈ N and w(P) ∈ ∂ê(P)∩ V(k)
Y ∩ δ(ê(P)) =

⋃

B∈B

Inf`B ,UB(v)∩ p−1Staro
kB
(w)∩ δ(ê(P)),

(4) Om,k,P refines the restriction of U to ε(P),
(5) mP ≥maxB∈B(P)(`B), kP ≥maxB∈B(P)(kB),
(6) each open star in the associated kP -th cubical derived decomposition

of ε
(
ê(P)

)
contains at most one point from {W(B) : B ∈ B(P)},

(7) for each w ∈ ∂ê(P)∩ V(kP ) there exists B ∈ B such that

either W(B) ∈ Staro
kP
(w) or p−1

(
Staro

kP
(w)

) ⊆
⋃

v∈V(`B)
Inf`B ,UB(v).
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For a Borel subgroup B(w) define

Ord`B ,UB ,kP (v ;w)
def=
(
Inf`B ,UB(v)\e(P)̂

)
∪ p−1Staro

kP
(w)

and

ExcOrd`B ,UB ,kP (v ;w)
def= Ord`B ,UB ,kP (v ;w)\

⋃

B<P ′
e(P ′)̂.

Consider the category ExcOrdY of finite open coverings by the sets (Exc)Ord`B ,UB ,kP (v ;w)
and Om,k,P for all choices of β, B, P, etc., and generate all finite rigid coverings

ω ∈ CovY which satisfy

• imω ∈ ExcOrdY ,

• ω(y) = Ord`P ,k(v ;w) for some P ∈ P if and only if y ∈ ε(P),
• if y ∈ ε(B) for some B ∈ P then

ω(y) = ExcOrd`P(w),k(v ;w)

for some v where χ
(
W(B)

) = Staro
k(w) for a fixed finite rigid covering

χ of εX(M0
1 ) by open stars Staro

k(z), z ∈ V(k),
• ω(y) ∈ Om,k if y ∈ ε(P).

The resulting coverings form a full subcategory PreOrdY ⊆ CovY . This proce-

dure may look asymmetric as to the roles of maximal strata played in corners

X(B) = e(P ′)̂∪ e(P ′′)̂

when P ′, P ′′ ∈ P and y ∈ ε(B): there is a choice of w and, hence, of particular

P (j) involved here. The asymmetry disappears after the next step when one

generates the smallest full subcategory OrdY of CovY containing PreOrdY
and closed under intersections.

The category OrdY is not cofinal; however the map

∗ : ȟ(Y ;KR) -→ holim←−−−−
OrdY

(N ∧KR)

induced by the inclusion  : OrdY ↩ CovY is a weak homotopy equivalence

by Quillen’s Theorem A, cf. [8].

Definition ofA. The boundedly saturated coverings we produce are outcomes

of actual saturation with respect to some Boolean algebra of boundedly satu-

rated sets. Saturation enlarges the sets in OrdY using the chosen coverings

αB , B ∈ B, and πP , P ∈ P. It suffices to present the construction of boundedly

saturated coverings α(ω,αB , πP) based on generators ω ∈ PreOrdY .

Definition 5.5. For B ∈ BR(SL3) use the notation α1,B or α2,B for the finite rigid

covering of σ1,B or σ2,B respectively given by αi,B(y) = αB(y) ∩ σi,B for each

y ∈ σi,B . The same formula associates αi,B(y) ⊆ σi,B to each y ∈ ∂e(B). For

P > B of type i, define ΠB,P : δe(B)→ imπP by

ΠB,P(y) =


αi,B(y)×

(
ê(P)

)S
Q if B ∈ B,

αi,B′(v)×
(
ê(P)

)S
Q otherwise,



24 BORIS GOLDFARB

where B′ ∈ BR and the vertices v ,w are fromω(y) = ExcOrd`B′(w),UB′ ,kP (v ;w).
Now define

αint(y) =




πP(y) if y ∈ ε(P), P ∈ P∩PQ
ω(y)\ε(B)∪ΠB,P(y) if y ∈ ε(B), B ∈ B,

ω(y)∪ΠB,P(j)(y) if y ∈ σj,B , B ∉ B,

ω(y) otherwise.

The saturation of a subset S with respect to a Boolean algebra of sets is the

union of elements of BA which intersect S nontrivially. Define α(β) as the

finite rigid covering of Y by the saturations of sets S in αint(β) with respect to

the Boolean algebra BA from Definition 5.4. The equivariant categoryA is the

collection of all such α.

Each of the two steps in this construction preserves the homotopy type of the

nerve of ω and αint. Now the natural transformation N → Nαint( )→ Nα( )
is composed of homotopy equivalences. So

holim←−−−−
OrdY

(N ∧KR) '
----------------------------------------------→ holim←−−−−

OrdY
(Nαint( )∧KR) '

----------------------------------------------→ holim←−−−−
OrdY

(Nα( )∧KR).

This procedure also defines a left cofinal saturation functor sat : OrdY → A
so that the induced map

sat∗ : holim←−−−−
OrdY

(Nα( )∧KR) '
----------------------------------------------→ holim←−−−−

A
(N ∧KR).

The composition of all weak equivalences above is the required weak equiva-

lence

θ : ȟ(Y ;KR) ' holim←−−−−
A

(N ∧KR).
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