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Abstract. New compactifications of symmetric spaces of noncompact type X are constructed

using the asymptotic geometry of the Borel–Serre enlargement. The controlled K-theory associ-

ated to these compactifications is used to prove the integral Novikov conjecture for arithmetic

groups.

1. Statement of the results

There is a long history of technique called compactification or attaching a boundary in the

study of noncompact symmetric spaces and domains. We will use this term to describe an

embedding of the symmetric space as an open subset in a compact Hausdorff space. The

boundary points usually carry asymptotic information about the symmetric space which is

useful in harmonic analysis and the study of random walks on symmetric spaces. Sometimes

these procedures are directly related to compactifications of arithmetic quotients of symmetric

spaces. These quotients are moduli spaces of interesting objects, and the boundary points

represent the degenerate versions of these objects.

A class of constructions which serve both ends is called Satake compactifications. Each Sa-

take compactification XS is a union of certain strata attached to the symmetric space X, each

stratum corresponding to a parabolic subgroup of the connected isometry group of X. Now

assume that G is a semisimple linear algebraic group defined over Q and that X is the sym-

metric space of maximal compact subgroups of the real points G(R). Attaching only the strata

corresponding to Q-parabolic subgroups gives an enlargement XS
Q of X (no longer compact)

which is invariant under any arithmetic subgroup Γ of G. After a suitable change of topology

in XS
Q, the quotient XS

Q/Γ becomes a compactification of X/Γ .
Another less singular compactification of X/Γ was constructed by Borel and Serre following

the same blueprint. There is an enlargement XBS
Q of X by certain strata corresponding to Q-

parabolic subgroups of G. The quotient XBS
Q /Γ is again compact but the strata are chosen so

that the quotient becomes the classifying space BΓ for a torsion-free arithmetic group which

makes this construction useful for group cohomology computations. There is also an analogue

of the Satake compactification of X in this context. Attaching Borel–Serre strata corresponding

to all R-parabolic subgroups one gets an enlargenment XBS
R of X which is no longer compact.

When the R- and Q-ranks of G coincide, the spaces XBS
R and XBS

Q fit together particularly well.

We will be interested in this split rank situation which includes all classical groups G.

Following S. Zucker [31] we see that there is a continuous map f from XBS
R onto the compact

Satake space XS which restricts to a continuous map from XBS
Q onto XS

Q with either topology.

We will construct a compactification X∗ of X by attaching a boundary to each fiber of the map

f and introducing a compact Hausdorff topology on the resulting set so that f extends to a

continuous map q : X∗ → XS. Even though the topological space X∗ is not metrizable, the
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construction and interpretation of the boundary points are very geometric. We summarize the

most important properties in the first theorem.

Theorem 1. Given the symmetric space X associated with a split rank algebraic group G, there

is an embedding of X in a space X∗ such that

(1) X∗ is compact and Hausdorff,

(2) X is an open dense subset of X∗; in fact, the Borel–Serre enlargement XBS
Q of X is an open

dense subset of X∗,

(3) X∗ is acyclic in the appropriate Čech sense,

(4) the isometries of X extend to continuous maps of X∗,

(5) there are continuous equivariant maps from X∗ to other compactifications of X such as

those of Satake, Bailey–Borel, and Martin at the bottom of the spectrum.

The compactification X∗ with its properties is a major geometric component in splitting the

integral assembly map in algebraic K-theory for arithmetic lattices, which is our other main

result. We refer to the proceedings [13] for the background, motivation, and careful discussion

of Novikov and related conjectures.

Theorem 2. If Γ is a torsion-free arithmetic group in an algebraic group of split rank, and R is

an arbitrary ring, the assembly map α : h(Γ , K(R)) → K(R[Γ]) from the homology of the group

Γ with coefficients in the K-theory spectrum K(R) to the K-theory of the group ring R[Γ] is a split

injection. Here K(A) stands for the nonconnective K-theory spectrum of the ring A.

The argument uses a refinement of the methods previously successful where geometry of

the group possessed some manifestation of nonpositive curvature [7, 8, 15, 16].

We should point out that the topological Novikov conjecture on homotopy invariance of

higher signatures has been known for torsion-free lattices in algebraic groups for some time,

due to various authors. It is also known, in its integral K-theoretic form as here, for cocompact

lattices, cf. [7]. On the other hand, the nonuniform lattices in higher ranks are not bicombable

[11, 12] which excludes the possibility of applying techniques from CAT(0) geometry and its

analogues to these groups.

A concrete class of arithmetic groups are congruence subgroups defined as the kernels of

surjective mapsG(Z)→ G(Z`) induced by reduction mod ` for various levels `. The congruence

subgroups of SLn of all levels ` 6= 2 are torsion-free, and every arithmetic subgroup contains a

suitable congruence subgroup according to the solution of the congruence subgroup problem.

This identifies a particular system of groups to which our theorem applies.

The paper is organized as follows. In section 2, we review necessary details from algebraic

groups mainly to establish notation. In section 3, we describe the constructions of Satake

and Borel–Serre and maps between them that we use in section 4 to construct the space X∗.

Section 5 establishes topological properties of X∗ and studies certain geometric properties

of the boundary in X∗. Section 6 shows how to apply these properties to split the integral

assembly maps.

2. Symmetric Spaces. Algebraic Groups. Arithmetic Subgroups

2.1. Symmetric Spaces. A symmetric space of noncompact type is a complete simply-connected

Riemannian manifold of nonpositive sectional curvature such that for each point x ∈ X the

geodesic symmetry sx : X → X given by expx(v), expx(−v) for all v ∈ TxX is an isometry of

X, and X is not compact but contains no Euclidean space as a Riemannian factor.

The connected isometry group G = I0(X) is a semisimple Lie group with no compact factors

and with trivial center. It is transitive on X, and X � G/K where K is the maximal compact

subgroup ofG stabilizing a point x ∈ X. IfG is a semisimple Lie group with finite center and no

compact factors, and ifK is a maximal compact subgroup, then the homogeneous spaceG/K is a

symmetric space of noncompact type. A k-flat inX is a complete totally geodesic k-dimensional
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submanifold with zero sectional curvature. The rank of X is the maximal dimension of a k-flat

in X.

Every nonpositively curved manifold may be compactified by attaching the ideal boundary

∂X and introducing the cone topology on εX = X∪∂X. The points of ∂X are asymptotic classes

of geodesic rays, so the isometric action of G = I0(X) on X extends to ∂X.

2.2. Linear Algebraic Groups. Given a linear algebraic groupH defined over a subfield k of the

complex numbers, we use the notation H(k) for the k-points of H. The connected component

of the identity is denoted by H0. The Zariski topology is always understood in H(k) when

k 6= R, and the classical Lie group topology when k = R. If H is connected, put

0H
def
=

⋂

χ∈X(H)

ker(χ2),

where X(H) is the group of rational characters. The group 0H is normal in H and is defined

over k. Let S be a maximal k-split torus of the radical RH. Then H(R) = A Î 0H(R), a semi-

direct product, where A = S(R)0, and 0H(R) contains every compact subgroup of H(R), and

also, if k = Q, every arithmetic subgroup of H. If RuH denotes the unipotent radical of H, then

L̂H = H/RuH is the canonical reductive Levi quotient. It is also defined over k. Let M̂H = 0L̂H .

2.2.1. Notation. An object associated to the reductive Levi quotient L̂H rather than the group

H itself will usually indicate this by wearing a ‘hat’.

The totality of all parabolic subgroups of H will be denoted by P = P(H). If k′ ⊆ k is a

subfield thenPk′ = Pk′(H)will denote all parabolic subgroups defined over k′. Similar notation

B = B(H) and Bk′ = Bk′(H) will be used for Borel subgroups. The projection πH : H →
L̂H induces a bijection Pk(H) ↔ Pk(L̂H) preserving conjugacy classes over k, and likewise

Pk(L̂H)↔ Pk(L̂H/ĈH), where ĈH is the center of L̂H .

2.2.2. Notation. Let T̂H be a maximal k-split torus of L̂H/ĈH . If ∆̂H is a system of simple roots

with respect to T̂H , let P̂Θ (resp. PΘ) denote the standard k-parabolic subgroup of L̂H/ĈH (resp.

of H) relative to T̂H and ∆̂H corresponding to the choice of Θ ⊆ ∆H .

This correspondence Θ , PΘ defines a lattice isomorphism between the power set of ∆H ≡
∆̂H and the set of standard parabolic k-subgroups of H. Moreover, each P ∈ Pk(H) can be

written as hPΘ := hPΘh−1 for some h ∈ H(k) and a uniquely determined Θ(P) ⊆ ∆̂H .

Now suppose H is a semisimple group with a set of simple Q-roots ∆. They are the vertices

in the connected Dynkin diagram. Let T be a nonempty subset of ∆. For Θ ⊆ ∆ let κT (Θ) be

the union of all connected components of Θ that meet T .

2.2.3. Definition. Given any P ∈ PQ(H), it determines a subsetΘ = Θ(P) ⊆ ∆ such that P = gPΘ.

Let Q = gPκT (Θ) and call Q a T -connected parabolic subgroup associated to P .

Let P0 be the standard minimal parabolic Q-subgroup of G, let A be the maximal Q-split

torus of G contained in P0, and K be the maximal compact subgroup in G(R) whose Lie algebra

is orthogonal (relative to the Killing form) to the Lie algebra of A(R). Let

At = {a ∈ A(R)
0 : α(a) ≤ t,∀α ∈ ∆}.

Recall that P0 = ZG(A) · Ru(P0). Furthermore, ZG(A) ≈ A · F where F is the largest connected

Q-anisotropic Q-subgroup of ZG(A). From the Iwasawa decomposition, G(R) = K · P(R). This

yields the following decomposition:

G(R) = K ·A(R)0 · F(R) · RuP0(R).

Recall that a Siegel set in G(R) is a set of the form

Σt,η,ω = K ·At · η ·ω,

where η and ω are compact subsets of F(R) and RuP0(R) respectively.
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2.2.4. Theorem (Borel). There are a Siegel set Σ = Σt,η,ω and a finite set C ⊆ G(Q) such that

Ω = C · Σ is a fundamental set for Γ .

2.3. Arithmetic Groups. Let G be a linear algebraic group defined over Q and write G(Z) =
G(Q)∩ GLn(Z).

2.3.1. Definition. A subgroup Γ of G(Q) is arithmetic if Γ and G(Z) are commensurable, that is,

if the subgroup Γ ∩G(Z) has finite index in both Γ and G(Z). A discrete group Γ is arithmetic

if it is isomorphic to an arithmetic subgroup of some group G.

Consider the real pointsG(R) ofG. It is a real Lie group, and Γ ⊆ G(R) is a discrete subgroup.

When G is semisimple, Γ acts freely and properly discontinuously on the symmetric space

X associated to G(R). The quotient manifold M = X/Γ is not necessarily compact unless

rankG = 0 but always has finite invariant volume, that is, Γ is a nonuniform lattice in G(R).
According to Margulis, such lattices are always arithmetic if G is simple with finite center, and

rank(G) ≥ 2. This is true for nonuniform lattices in SLn for n ≥ 3.

2.3.2. Example. The most prominent class of arithmetic groups are congruence subgroups de-

fined as the kernels of surjective maps G(Z) → G(Z`) induced by reduction mod ` for various

levels `. Every arithmetic group contains a normal torsion-free subgroup of finite index, but,

according to Minkowski, the congruence subgroups of special linear groups SLn of all levels

` 6= 2 are themselves torsion-free. Same is true for other classical groups such as symplectic

groups Sp2n. In these cases, when rank(G) ≥ 2, every arithmetic subgroup contains a suitable

congruence subgroup by the solution of the congruence subgroup problem.

3. Enlargements of the Symmetric Space

3.1. Borel–Serre Enlargements. Let G be a semisimple algebraic group defined over Q and Γ

be an arithmetic subgroup. It is a lattice in the real Lie group of real points G(R) and acts on

the symmetric space of maximal compact subgroups X = G(R)/K so that X is a model for EΓ
if Γ is torsion-free.

3.1.1. Definition. An enlargement of a topological space is an embedding in a superspace as

an open subset. A compactification is an enlargement to a compact Hausdorff space.

Borel and Serre [3] form a contractible enlargement XQ of X which depends only on the Q-

structure of G so that the action of Γ on X extends to a proper action on XQ. (This is the space

called XBS
Q in Theorem 2.) It is a new model for EΓ but with the free action that is cocompact.

Our goal is to construct a compactification X∗ of XQ.

Using notation from section 2.2, let P ∈ Pk(G), and let ŜP denote the maximal k-split torus

of ĈP , and ÂP = ŜP(R)0. The dimension of ÂP is the parabolic k-rank of P . To each x ∈ X
is associated the Cartan involution θx of G that acts trivially on the corresponding maximal

compact subgroup. There is a unique θx-stable lift τx : L̂P(R) → P(R) which gives θx-stable

liftings AP,x = τx(ÂP), SP,x = τx
(
ŜP(R)

)
, and MP,x = τx

(
M̂P(R)

)
of the subgroups ÂP , ŜP(R),

and M̂P(R).

3.1.2. Definition. The geodesic action of ÂP on X is given by a◦x = ax ·x, where ax = τx(a) ∈
AP,x is the lifting of a ∈ ÂP .

Now X can be viewed as the total space of a principal ÂP -bundle under the geodesic action.

The group ÂP can be openly embedded in Rcard(∆̂−Θ(P)) via

ÂP 7 -→ (R
∗
+)

card(∆̂−Θ(P)).

Let ĀP be the ‘corner’ consisting of ÂP together with positive card(∆̂−Θ(P))-tuples where the

entry∞ is allowed with the obvious topology making it diffeomorphic to (0,∞]card(∆̂−Θ(P)). The

group ÂP acts on ĀP , and the corner X(P) associated to P is the total space of the associated
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bundle X ×ÂP ĀP with fiber ĀP . Denote the common base X/ÂP . of these two bundles by e(P).

In particular, e(G0) = X.

3.1.3. Definition. The Borel–Serre enlargement

Xk =
⊔

P∈Pk(G)

e(P)

has a natural structure of a manifold with corners in which each corner X(P) =
⊔
Q⊇P e(Q) is

an open submanifold with corners. The action of Q(k) on X extends to the enlargement Xk.
The faces e(P), P ∈ Pk(G), are permuted under this action.

We will borrow a term from [32]. Let qP : X → e(P) denote the bundle map. For any open

subset V ⊆ e(P) a cross-sectionσ of qP over V determines a translation of V from the boundary

of Xk, k = Q or R, into the interior X. For any t ∈ ÂP put

ÂP(t) = {a ∈ ÂP : aα > tα for all α ∈ ∆P},

where ∆P is the set of those simple roots with respect to a lifting of T̂P that occur in RuP
(transported back to ÂP ). It is complementary to Θ(P) in ∆̂.

3.1.4. Definition. For any cross-section σ(V), a set of the form Ŵ(V ,σ , t) = ÂP(t) ◦ σ(V) will

be called an open set defined by geodesic influx from V into X. There is a natural isomorphism

µσ : ÂP(t)× V
'
--------------→ Ŵ(V ,σ , t)

which extends to a diffeomorphism

µ̄σ : ĀP(t)× V
'
--------------→ W(V,σ , t).

Now W(V,σ , t) is a neighborhood of V in Xk (for k = Q or R) with

µ̄σ ({(∞, . . . ,∞)} × V) = V.

We will call it an open neighborhood defined by geodesic influx from V into X.

All of that done so far works for more general homogeneousH-spaces than symmetric spaces

for semisimple H. Borel and Serre call them spaces of type S−k. For each Q ∈ Pk(G), e(Q) is

such a space. So

e(Q)k =
⊔

P∈Pk(Q)

e(P) =
⊔

Q⊇P∈Pk(G)

e(P)

can be formed; it is diffeomorphic to the closure e(Q) of e(Q) in Xk. In fact, whenever P ⊆ Q,

ÂQ is canonically a subgroup of ÂP so that the geodesic actions are compatible. The group ÂP
acts geodesically on e(Q) through ÂP/ÂQ with quotient e(P). The stratum e(P) ⊆ e(Q) is the

set of limit points of this geodesic action.

Recall that the parabolic k-subgroups index the simplices W(P) of the Tits k-building of G.

The dimensions of the strata e(P) and the incidence relations among their closures reflect the

structure of the building as follows:

dim e(P)+ dimW(P) = dimX − 1,

e(P)∩ e(Q) 6= ∅ ⇐⇒ e(P) ⊆ e(Q)⇐⇒ W(Q) ⊆ W(P)⇐⇒ P ⊆ Q.

The minimal parabolic (Borel) k-subgroups correspond to the strata e(P) of dimension dimX−
rankkG, and to the top simplices of the building.

3.1.5. Remark. When B is a Borel R-subgroup of G, we have the Iwasawa decomposition G(R) =
KABNB(R). Then X ≈ ABNB(R), and the geodesic action of AB on X coincides with multiplica-

tion. The quotient e(B) can be viewed as the underlying space of the nilpotent group NB(R).
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3.2. Actions on Strata. For k = Q or R, let P be a parabolic k-subgroup of G. Recall the

projection πP : P → L̂P from §2.2. The real points of the reductive Levi quotient split as a direct

product

L̂P(R) = M̂P(R)× ÂP ,

where M̂P = 0L̂P , and there is the Langlands decomposition

P(R) = MP,xAP,xLP,x.

Recall that Kx is the stabilizer of x in G(R) acting on X. Then KP,x = Kx∩P(R) is the stabilizer

of x in P(R). The Borel–Serre stratum e(P) = P(R)/KP,xAP,x is a space of type S for P . Notice

that it is acted upon from the left by RuP(R).

3.2.1. Definition. The quotient ê(P) is called the reductive Borel–Serre stratum.

Denote the quotient map by µP : e(P) → ê(P). Let K̂P = πP(KP,x), then K̂P is a maximal

compact subgroup of M̂P(R) and is lifted to KP,x by τx . From the Langlands decomposition,

ê(P) = RuP(R)\P(R)/KP,xAP,x = L̂P(R)/K̂P ÂP � M̂P(R)/K̂P

is the space of type S associated to the reductive group L̂P : in general, it may not be connected,

and it may have trivial R∗+ factors.

3.2.2. Proposition. For each P ∈ PR(G), the principal RuP(R)-fibration µP extends to a principal

fibration

µ̄P : e(P) -→ ê(P).

Proof. Let Q ⊆ P be proper parabolic subgroups with the unipotent radicals RuQ ⊇ RuP , then

Q determines a parabolic subgroup

QP = πP(Q) = Q/RuP ⊆ L̂P = P/RuP

with the unipotent radical RuQP = RuQ/RuP . Now AQP is canonically identified with AP,B ,

in the notation of Borel and Serre [3]. The geodesic actions of AQ on e(P) and ê(P) commute

with µP , so XP(Q) is a principal RuP(R)-bundle over XL̂P (Q
P), and the projection τQ : XP(Q)→

XL̂P (Q
P) extends µP . These fibrations τ∗ are compatible with the order in the lattice P(P) in

the sense that for each pair Q1 ⊆ Q2 ⊆ P the restriction of τQ1 to e(Q2) is the projection of a

principal RuP(R)-fibration with base e(QP2). So the principal fibrations τ∗ are also compatible

with the inclusions X(Q2) ↩ X(Q1) and match up to give a principal fibration structure for

e(P) over ê(P). 5

3.2.3. Proposition (Zucker [30]). There is a diffeomorphism

F : RuP(R)× ê(P) -→ e(P)

given by

F(u, zK̂P ÂP) = u · τx(z)KP,xAP,x ∈ e(P) = P(R)/KP,xAP,x.

Here, zK̂P ÂP ∈ ê(P) = L̂P(R)/K̂P ÂP . The map F depends on the choice of the basepoint x which

determines the lift τx .

Lemma (7.8) of [17] gives a formula for the action of P(R) on e(P) in terms of the coordinates

that F provides. Notice that g · τxµP(g−1) ∈ ker(µP) = RuP(R) for any g ∈ P(R), so

g ·u · τxµP(g
−1) = gug−1 · gτxµP(g

−1) ∈ RuP(R)

for all g ∈ P(R), u ∈ RuP(R).

3.2.4. Lemma. The action of P(R) on RuP(R)× ê(P) is given by

g · (u, zK̂P ÂP) = (g ·u · τxµP(g
−1), µP(g) · zK̂P ÂP).

This formula shows that RuP(R) acts only on the first factor by translation. It also follows

that there are other equivariant enlargements where the strata are reductive Borel–Serre strata.
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3.2.5. Definition. The reductive Borel–Serre enlargement X
ρ
k (k = Q or R) of X is the topological

space obtained from the corresponding Borel–Serre enlargement Xk by collapsing each nilpo-

tent fiber of the projection µP : e(P) → ê(P) to a point. These projections combine to give a

quotient map µ : Xk → X
ρ
k . The quotient X

ρ
/Γ is called the reductive Borel–Serre compactifica-

tion.

3.3. Comparison with Satake Compactifications. Workers in different fields mean different

objects when they speak of Satake compactifications. The earlier constructions [27] are com-

pactifications of a globally symmetric space which were later compared to Martin and Fursten-

berg compactifications and have applications in analysis; the later ones [28] are compactifica-

tions of (locally symmetric) arithmetic quotients of symmetric spaces which are the quotients

of certain rational portions of the first construction with a properly redefined topology. We are

interested in the first construction and the techniques used to study the second. The references

for this material are [17, 27, 28, 31].

Let G be as in §3.1 and τ : G(R) -→ SL(V) be a finite-dimensional representation with finite

kernel. For an admissible inner product on V , let v∗ denote the adjoint of v . The admissibility

of the inner product means that τ(g)τ
(
θK(g)

)∗
= I. So the mapping τ0(g) := τ(g)τ(g)∗

descends to X. Each τ0(g) is a self-adjoint endomorphism of V . Factoring out the action of

the scalars, we get τ0 : X → PS(V) which is an equivariant embedding. Taking the closure of

the image, one gets the Satake compactification XS
τ . The G-action on X extends to XS

τ and the

boundary XS
τ − X decomposes into orbits of certain subgroups of G called boundary compo-

nents. The subgroups are the parabolic subgroups which are τ-connected in the appropriate

sense. They also correspond to T -connected subsets of ∆ for some T ⊆ ∆ as in Definition 2.2.3.

We will use interchangeable notation XS
τ and XS

T . The spaces XS
T are certainly compact and

Hausdorff as the closures of bounded subspaces in PS(V).

3.3.1. Example (Minimal Satake Compactifications). These correspond to subsets T consisting

of a single root. The boundary components of minimal Satake enlargements kX
S
i are in bijective

correspondence with the maximal parabolic k-subgroups.

3.3.2. Example (Maximal Satake Compactification). This is the compactification corresponding

to T = ∆. There is always a continuous projection from XS
∆

onto any other Satake compactifi-

cation XS
Θ

for Θ ⊆ ∆.

Interpreting Zucker [31], Satake compactifications can be viewed as targets of surjective maps

from the Borel–Serre enlargements. He describes them as quotients of the rational reductive

Borel–Serre enlargement as follows. For Θ ⊆ ∆ and P = gPΘ ∈ Pk(G), let Q = gPκT (Θ). Then

there is a projection

pT ,P : ê(P) = ê(gPΘ) -→ ê(Q).

The stratum ê(Q) as a space of type S for L̂Q. It is the product of the symmetric space for

L̂red
Q (R)0 and the real points of a factor of its center, the orbit of an anisotropic torus. The

corresponding Satake boundary component s(Q) is the non-Euclidean factor of ê(Q). Let

qQ : ê(Q) -→ s(Q)

be the coordinate projection. Now

kX
S
T =

⋃

Q∈PT

s(Q),

where PT is the set of all T -connected Q-parabolic subgroups, and in general the union is not

disjoint. Under the

Assumption: rankQ(G) = rankR(G)

which we make from now on unless state otherwise, the set ∆ plays the role of simpleQ- and R-

roots, and the torus action above is trivial, so qQ is an equivalence. If T = ∆, the map pT ,P is an
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equivalence, and we may identify the reductive Borel–Serre enlargement X
ρ
k with the maximal

Satake enlargement kX
S
∆

, cf. [30, §4.2].

3.3.3. Theorem (Zucker [31]). The composition ΦP = qQ ◦ pT ,P is the restriction of a map

ΦT : X
ρ
k → kX

S
T . This map factors through other ΦΘ : X

ρ
k → kX

S
Θ

for Θ ⊇ T . Composing ΦT
with µ from Definition 3.2.5 gives ΦT : Xk → kX

S
T . In particular, there is a continuous map

Φ = Φ∆ : XR → RX
S
∆

.

Proof. This theorem is essentially contained in [31, §§2–3]. Zucker is more interested in the

restriction of ΦT to X but his §2 is very general and §3 works over R under our assumption. 5

4. Compactification of XQ

4.1. Malcev Spaces and their Compactification. We start by constructing special compactifi-

cations of connected simply-connected nilpotent groups.

Let Γ be a torsion-free finitely generated nilpotent group. According to Malcev [26], it can

be embedded as a uniform lattice in a connected simply-connected nilpotent Lie group N . By

[26, Lemma 4] the subgroup Γ has generators {γ1, . . . , γr}, where r = dimN , with the three

properties:

(1) each γ ∈ Γ can be written as γ = γ
n1
1 · · ·γ

nr
r ,

(2) each subset Γi = {γ
ni
i · · ·γ

nr
r } is a normal subgroup of Γ , and

(3) the quotients Γi/Γi+1 are infinite cyclic for all 1 ≤ i < r .

Let Ci = ci(t) be the one-parameter subgroup of N with ci(1) = γi, 1 ≤ i ≤ r . It is easily

seen that N satisfies analogues of the three properties of Γ :

(1) N = C1 · · ·Cr , and the representation of g ∈ N as g = g1 · · ·gr , gi ∈ Ci, is unique,

(2) ifNr+1 = {e},Ni = Ci · · ·Cr , 1 ≤ i ≤ r , thenNi are Lie subgroups ofN , dimNi = r−i+1,

and Ni / N for 1 ≤ i < r ,

(3) Ci � R for all 1 ≤ i ≤ r .

If n is the Lie algebra of N then e1 = logγ1, …, er = logγr becomes a basis in n so that each

set

ni = {αiei +αi+1ei+1 + · · · +αrer} ⊆ n

is an ideal. So {γi} produce special canonical Malcev coordinates of the first kind . The corre-

spondences

log : g , logg,

σ :

r∑

k=1

αkek ,
r∑

k=1

αk(0, . . . ,

k
_
1, . . . ,0)

define diffeomorphisms between N , n and Rr and induce flat metrics in N and n from the

standard Euclidean metric in Rr .

Let Mi = N/Ni = C1 · · ·Ci−1. Since ni is an ideal in n, for any a ∈ N the Poisson bracket

[a, ei] is inNi+1. Denote the coordinates of p, g ∈ N by ξi, ηi respectively, then the coordinates

ζi(t) of p · g satisfy

(∗) ζi = ξi + ηi + qi(ξ1, . . . , ξi−1, η1, . . . , ηi−1),

where qi are polynomials determined by the Campbell–Hausdorff formula. This shows that if

p ∈ Nj then ξ1 = · · · = ξj−1 = 0 and ζk, k < j, are independent of ξj , . . . , ξr . We can conclude

that p ·g lies in the hyperplane (ζ1, . . . , ζj−1,∗, . . . ,∗) parallel to Nj . So N acts from the right

on the set of hyperplanes parallel to Nj . Similar arguments apply to the left multiplication

action.

Consider the enlargement of N , as a set, by the ends of rays in Mj+1 parallel to Cj for each

j = 1, . . . , r − 1. In order to visualize and parametrize the resulting enlargement, it is helpful

to embed N as (−1,1)r ⊆ Rr in the most obvious fashion so that the order of the coordinates
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in Rr coincides with the order of the index of Ci ⊆ N , and the parallelism relation is preserved.

We want to define a sequence of certain topological collapses. The collapses are performed in

the boundary of the cube Ir and its successive quotients. The first collapse contracts

{(x1, . . . , xr−1,∗) ∈ I
r : ∃1 ≤ i ≤ r − 1 with xi = ±1} -→ point.

We give this point the projective coordinates (x1, . . . , xr−1, [). The set

{(x1, . . . , xr−1, [) : ∃1 ≤ i ≤ r − 1 with xi = ±1}

is the boundary of Ir−1. Now we induct on the dimension of the cube. For example, the collapse

at the m-th stage can be described a

{(x1, . . . , xr−m,∗, [, . . . , [) ∈ I
r−m+1 : ∃1 ≤ i ≤ r −m with xi = ±1}

-→ (x1, . . . , xr−m−1, [, . . . , [).

The process effectively stops after r − 1 steps when the points (±1, [, . . . , [) do not get iden-

tified. The result is a topological ball Br with the CW-structure consisting of two cells of each

dimension 0,1, . . . , r −1 and one r -dimensional cell and a continuous composition of collapses

ρ : Ir → Br . Each lower dimensional cell is the quotient of the appropriate face in ∂Ir : if the

face F was defined by xi = ±1 then dimρ(F) = i.

4.1.1. Definition. Let N∗ be the enlargement of N by endpoints of rays in Mj+1 parallel to Cj
for all 1 ≤ j ≤ r − 1. The topology in N∗ is induced via the identification with the quotient of

the Euclidean cube Ir . The identification also defines a cellular structure on N∗.

4.1.2. Proposition. The enlargement N∗ is a compactification which is both left and right equi-

variant with respect to the left and right multiplication actions of N on itself. The orbits of the

two actions in ∂N = N∗−N coincide with the cells in the cellular decomposition of the boundary

sphere.

Proof. The fact that N∗ is a compactification of N follows from the evident properties of the

quotient of the cube Ir . Since the formulas (∗) are polynomial, the right multiplication action

has a continuous extension to ∂N . Similar formulas for the left action are also polynomial.

The cells are invariant because the actions preserve the parallelism relation among the relevant

rays. 5

4.2. Construction 1. Retopologizing the target of the continuous map Φ : XR → RX
S
∆

of Zucker,

we get a continuous map Φ : XR → XS
∆

onto the maximal Satake compactification of X. The

fibers of this map are still the nilpotent radicals of the corresponding R-parabolic subgroups.

We know from Lemma 3.2.4 that the unipotent radicals act in the fibers by translation. The

first step is to compactify each fiber equivariantly.

If P1 ⊆ P2 are arbitrary standard R-parabolic subgroups, then RuP1 ⊇ RuP2. Let B0 be the

standard Borel subgroup. There is a choice of Malcev coordinates in B0 which restricts to Malcev

coordinates in all RuPΘ, Θ ⊆ ∆. In particular, we have a fixed ordering of all chosen coordinates

in RuPΘ. For arbitrary y ∈ XS
∆

, if y ∈ s(gPΘ) then Φ−1(y) ⊆ e(gPΘ), so Φ−1(y) � RuPΘ. We

apply the construction from section 4.1 to each Φ−1(y), y ∈ XS − X, denote the result by

Φ−1(y)∗, and put

δX =
⋃

y∈XS\X

∂Φ−1(y).

4.2.1. Definition. Put X∗ = XR t δX.

There is the obvious set projection q : X∗ → XS
∆

extending Φ from Theorem 3.3.3 collapsing

q−1(y)∗ , y . The topology in X∗ will be introduced using the following fact.

4.2.2. Proposition (Bourbaki [4]). Let X be a set. If to each x ∈ X there corresponds a set N (x)
of subsets of X such that
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(1) every subset of X containing one from N (x) itself belongs to N (x),
(2) a finite intersection of sets from N (x) belongs to N (x),
(3) the element x belongs to every set in N (x),
(4) for any N ∈N (x) there is W ∈N (x) such that N ∈N (y) for every y ∈ W ,

then there is a unique topology on X such that, for each x ∈ X,N (x) is the set of neighborhoods

of x, that is, subsets which contain an open superset of x.

The space XR has the topology in which each corner X(P) is open. For y ∈ XR let N (y) =
{O ⊆ X∗ : O contains an open neighborhood of y in XR}.

4.2.3. Notation. Set-theoretically, each e(P), P ∈ PR, is enlarged to s(P) × RuPΘ(P)(R)
∗. We

denote this set with the product topology by ε(P). Given an open subset U ⊆ ε(P), let O(U) =
q−1
P (V), the total space of the restriction to V = U∩e(P) of the trivial bundle qP over e(P) with

fiber AB . Then define C(U) = {z ∈ XR : there is O ∈N (z) such that O∩X ⊆ O(U)}∪{z ∈ δX :

there is an open U ′ ⊆ ε(P) with Φ(z) ∈ s(P) such that z ∈ U ′ and O(U ′) ⊆ O(U)}.

Now for y ∈ δX, let N (y) = {O ⊆ X∗ : there is an open set U ⊆ ε(P) with Φ(y) = s(P)
containing y with C(U) ⊆ O}. This defines a system of neighborhoodsN (y) for any y ∈ X∗.

4.2.4. Definition. For a subset S ⊆ X̂ let N (S) = {O ⊆ X∗ : O ∈ N (y) for every y ∈ S} and

call S primary open if S ∈ N (S).

4.2.5. Proposition. If P ∈ PR, and U,U1, U2 ⊆ ε(P) are open subsets, then

(1) C(U) is open in X∗,

(2) C(U1)∩C(U2) = C(U1 ∩U2).

Proof. These properties follow formally from the definition. 5

4.2.6. Theorem. The primary open subsets of X∗ form a well-defined topology.

Proof. We need to check that the four characteristic properties from Proposition 4.2.2 are satis-

fied by the system of neighborhoodsN (x), x ∈ X∗. Parts (1) and (3) are clear from definitions.

Part (2) follows from Proposition 4.2.5(2). Given any N ∈ N (x), x ∈ s(P)× ∂RuP(R), there is

U ⊆ ε(P) such that C(U) ⊆ N . Take W = C(U). By Proposition 4.2.5(1), N ∈ N (y) for any

y ∈ W . Thus (4) is also satisfied. 5

4.2.7. Definition. The set X∗ with the primary topology will be denoted by X∗1 . It is easy to see

that the primary topology on X∗1 is not Hausdorff.

The secondary topology on X∗ is the q-pull-back of the topology on XS
∆

. Let X∗2 be the

resulting topological space. Again, X∗2 is non-Hausdorff.

Let X∗ be the space topologized by the product of the primary and secondary topologies.

4.2.8. Example. Consider the algebraic group G = SL2 and an arbitrary proper parabolic R-

subgroup P of G. It acts on X fixing a point p(P) in ∂E, that is, P permutes geodesics abutting

to p(P). The corners X(P) are constructed by attaching a line at p(P) parametrizing these

geodesics. If P fixes a rational point then X(P) ⊆ X. Complete each stratum to e(P)∗ =
e(P)∪ {−∞,+∞}. The resulting set is X∗. Every X(P) is declared to be open, so typical open

neighborhoods of z ∈ e(P) in X∗ are the open neighborhoods of z in X(P). Given a line e(P)
and one of its endpoints y , a typical primary neighborhood of y consists of

• y itself and a ray in e(P) converging to y ,

• the set U in E swept out by the hyperbolic geodesics abutting to p(P) representing the

points of the ray in e(P),
• points in all strata e(B)∗, B ∈ PR, such that the hyperbolic geodesic connecting p(B) to

p(P) is properly inside U ,

• the ray in e(R), where p(R) is the opposite end of the geodesic representing the vertex

of the ray in e(P), represented by geodesics contained in U and its limit point in the

boundary ∂e(R).
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In this example, as in any case with rankG = 1, taking product with the secondary topology

does not affect the primary topology on X∗, cf. [15]. With this topology, the subspace X ⊆
X∗ has the hyperbolic metric topology, and X∗ − X is simply S1 × I with an analogue of the

lexicographic order topology. In terms of the usual description of the lexicographic ordering

on the unit square I × I, the analogue we refer to is the quotient topology on S1 × I associated

to the obvious identification (0, y) ∼ (1, y) for all y ∈ I. In particular, the boundary X∗−X is

compact but not separable and, therefore, not metrizable.

4.3. Construction 2. The construction in section 4.2 compactifies all strata e(P) simultane-

ously. Often it is more convenient to use an inductive description of the same primary topology

X∗1 as above. The induction is over the rank of the spaces of type S associated to R-parabolic

subgroups of G, or, in other terms, over the cardinality in the lattice of subsets Θ of simple

roots ∆ starting with Θ = ∆ and finishing with Θ = ∅.

So we start by ΓB-equivariantly compactifying each e(B), B ∈ BR. Again, by Remark 3.1.5 and

Lemma 3.2.4, e(B) ≈ NB = RuB(R), and the action is precisely the left multiplication action

of ΓB as a subgroup of NB . Each e(B) can be compactified as in section 4.1. In order to make

these compactifications compatible, we make our choice of Malcev coordinates in e(B0) for the

standard Borel subgroup B0 as in section 4.2 and take the resulting compactification e(B0)∗.

For any standard parabolic PΘ, the conjugation action of PΘ(R) permutes the Borel strata e(gB)
adjacent to e(PΘ). Define the space

Υ(∆,Θ)
def
= PΘ(R) ×

B0(R)
e(B0)

∗.

Inductively, given a standard parabolic subgroup PΘ, Θ ⊆ ∆, and compactifications e(PT )∗ for

T ⊇ Θ, define

Υ(T ,Θ)
def
= PΘ(R) ×

PT (R)
e(PT )

∗ and Υ(Θ)
def
=
⋃

T⊆Θ

Υ(T ,Θ).

Warning. The space Υ(Θ) comes with the identification topology which we are going to use in

the ensuing construction, but it will not be the subspace topology induced from the resulting

topology on X∗.

4.3.1. Definition. Define the set e(PΘ)∗ = ε(PΘ)t Υ(Θ).

The space e(PΘ)R has the topology in which each corner X(PT ) is open for all T ⊇ Θ. The

enlargement ε(PΘ) has the product topology as in §4.2. For y ∈ e(PΘ)R ∪ ε(PΘ) let N (y) =
{O ⊆ e(PΘ)∗ : O contains an open neighborhood of y in e(PΘ)R∪ε(PΘ)}. Given an open subset

U ⊆ Υ(T) for T ⊇ Θ, let O(U) = q−1
Θ,T (V), the total space of the restriction to V = U ∩ e(PT ) of

the trivial bundle qΘ,T over e(PT ) with fiber AΘ,T . If U is any open subset of Υ(Θ), let

O(U) =
⋃

P ′∈PR

O
(
U ∩ Υ(P ′)

)

where Υ(P ′) = gΥ(T) for P ′ = gPT ⊆ PΘ. Then define C(U) = {z ∈ e(PΘ)R ∪ ε(PΘ) : there is

O ∈ N (z) such that O ∩ e(PΘ) ⊆ O(U)} ∪ {z ∈ Υ(PΘ)\e(PΘ)R : there is an open U ′ ⊆ Υ(PΘ)
such that z ∈ U ′ and O(U ′) ⊆ O(U)}.

Now for y ∈ Υ(PΘ)\e(PΘ)R, let N (y) = {O ⊆ e(PΘ)∗ : there is an open set U ⊆ Υ(Θ)
containing y with C(U) ⊆ O}. This defines a system of neighborhoods N (y) for any y ∈
e(PΘ)∗. Again, the primary open subsets form a well-defined topology on e(PΘ)∗; for Θ = ∅
one gets the primary topology on X∗. It is easy to see that this is the same topology as in X∗1
using the compatibility of geodesic actions in the Borel–Serre strata as in Proposition 3.2.2. So

using this description in conjunction with the secondary topology X∗2 as in §4.2 gives the same

space X∗.

4.3.2. Remark. One can also use any of the minimal Satake compactifications and the map

ΦT : XR → RX
S
T to induce the secondary topology. This eventually gives the same topology on
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X∗ if used in the inductive construction of this section, where during the inductive step all of

the lower rank strata are assumed to already have the expected topology.

4.4. Construction 3. Recall from §2.1 that every irreducible symmetric space of noncompact

type X associated to some semisimple group G can be isometrically embedded as a totally

geodesic submanifold of X(SLn) for n = dim(G). The algebraic group SLn has split rank. The

closure of this embedding in X(SLn)∗ is a compactification of X. This description is harder

to handle than the explicit constructions above. Note, however, that there are no additional

assumptions about G such as split rank.

5. Topological and Other Properties

5.1. Hausdorff Property. For x1, x2 ∈ X∗, if q(x1) = q(x2) ∈ XS then either x1, x2 ∈ q−1(y)
for somey ∈ XS−X or x1 = x2 ∈ X. Now each q−1(y) is Hausdorff, so the points are separated

in the primary topology. If q(x1) 6= q(x2) ∈ XS then the points are separated in the secondary

topology since XS is Hausdorff.

5.2. Compactness. It can be shown that X∗1 is compact. Unfortunately compactness of X∗1 and

X∗2 alone does not imply compactness of X∗. This follows from

5.2.1. Lemma. For each y ∈ XS
∆

and any open neighborhood U of q−1(y) in X∗ there exists an

open neighborhood V of y such that q−1(y) ⊆ U .

Proof. The topology in XS
∆

can be described by making a sequence convergent if and only if it

converges to a maximal flat and its projection onto the flat converges in Taylor’s polyhedral

compactification [20, 29].

The claim is a tautology for y ∈ X. The question is easily reduced by induction on the rank

or dimension to the case of y = s(B) for some B ∈ BR(G). Here q−1(y) = RuB(R) = e(B).
Given a neighborhood U ⊇ e(B)∗, choose an open neighborhood N of ∂e(B) = e(B)∗\e(B)
in e(B)∗ and a section σ of qB so that U ⊇ C(N) ∪ W(σ) ⊇ e(B)∗. The geodesic influx set

W(σ) is an open neighborhood of e(B) in XR and W S(σ) = qW(σ) is an open neighborhood

of y in RX
S
∆

. Consider the subset R = q−1
B

(
�N

)
∩ �W S(σ) of XS

∆
and its closure cl(R) in

XS
∆

. Notice that y ∉ cl(R) because y is a vertex in the polyhedral compactifications of the

flats asymptotic to y which are precisely the fibers of qB , and the corresponding corners are

contained in W(σ). Clearly, q−1(clR) ⊇ cl
(
q−1
B (�N) ∩ �W(σ)

)
= �

(
C(N) ∪ W(σ)

)
. Now

q−1
(
� clR

)
= �q−1(clR) ⊆ C(N)∪W(σ) ⊆ U . So we can take V = � cl(R). 5

5.2.2. Corollary. The space X∗ is a compactification of both the symmetric space X and the

rational Borel–Serre enlargement X.

Proof. Let U be an arbitrary open covering of X̂. Since q−1(y) is compact for each y ∈ XS , let

Uy,1, . . . , Uy,ny be a finite collection of elements of U with

q−1(y) ⊆

ny⋃

i=1

Uy,i.

By Lemma 5.2.1 there is Vy such that

q−1(Vy) ⊆

ny⋃

i=1

Uy,i.

By compactness of XS there is a finite collection of points y1, . . . , yk with XS = Vy1∪· · ·∪Vyk .
Then

X̂ =

ny1⋃

i=1

Uy1,i ∪ · · · ∪

nyk⋃

i=1

Uyk,i.

5
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5.3. Čech-acyclicity. We will need to use homological triviality of our compactifications in §6.

The homology theory involved here is a version of Čech homology.

5.3.1. Definition (Carlsson–Pedersen [8]). A finite rigid covering of a topological space Z is a

set function β from Z to open subsets of Z which takes only finitely many values and satisfies

(1) x ∈ βx for all x ∈ Z and (2) cl(β−1U) ⊆ U for all U ∈ im(β). Set the nerve N(β) to be the

simplicial nerve of the infinite covering {β(x) : x ∈ Z}. The modified Čech homology of Z with

coefficients in a spectrum S is the simplicial spectrum

ȟ(Z ;S) = holim
←−−−−

CovZ

(N ∧ S),

where CovZ is the partially ordered category of finite rigid open coverings. This is a generalized

Steenrod homology theory.

We will see that all Satake compactifications of X are acyclic. Since the continuous map

q : X∗ → XS
∆

has contractible point inverses, it would be desirable to have an analogue of the

Vietoris–Begle theorem for the modified Čech theory. We proved a weak Vietoris–Begle theorem

in [15, Theorem 7.4.1]. Recall that the Chogoshvili homology theory is the unique extension

of the Steenrod–Sitnikov homology to compact Hausdorff spaces from the category of metric

compacta satisfying certain axioms of Berikashvili. The fibers need only be Chogoshvili-acyclic

for the result of Inassaridze used in that proof, so we have

5.3.2. Theorem. If f : X → Y is a surjective continuous map, whereY and f−1(y) are Chogoshvili-

acyclic for each y ∈ Y , then f̌ : ȟ(X;KR)→ ȟ(Y ;KR) is a weak homotopy equivalence. So both

X and Y are Čech-acyclic.

5.3.3. Theorem. Each space XS
Θ

is Chogoshvili-acyclic.

Proof. The metric spaceXS
Θ

needs to be Steenrod-acyclic. We useH∗( ) to denote the Steenrod–

Sitnikov homology and apply the following version of the Vietoris–Begle theorem.

5.3.4. Theorem (Nguen Le Ahn [25]). Let f : X → Y be a continuous surjective map of metrizable

compacta so that H̃i(f
−1(y);G) = 0 for all y ∈ Y , i ≤ n. Then the induced homomorphism

Hq(f ) : Hq(X;G) → Hq(Y ;G) is an isomorphism for 0 ≤ q ≤ n and an epimorphism for q =
n+ 1.

According to [20], the maximal Satake compactification XS
∆

is homeomorphic to the Martin

compactification XM(λ0) of X at the bottom of the positive spectrum λ0. There is also the

Karpelevǐc compactificationXK which is defined inductively in [23] and maps equivariantly onto

XM(λ0). Theorem 5.3.4 applies to this map f : XK → XM(λ0) because the fibers of f are easily

seen to be genuinely contractible using the result of Kushner [24] that XK is homeomorphic to

a ball. The same result applied to XK itself shows that all of the spaces in

Dn � XK f
------------→ XM(λ0) � X

S
∆

Φ
------------→ XS

T

are Steenrod- or Chogoshvili-acyclic. 5

5.3.5. Corollary. Compactifications X∗ are Čech-acyclic.

Note however that X∗ is unlikely to be contractible.

5.4. Equivariance. If Γ is an arithmetic subgroup of G(Q), it is immediate from the construc-

tion that this compactification is Γ -equivariant. In fact, the action of G(R) on X extends to X∗

which is in contrast to the fact that this action does not extend to X.

5.4.1. Remark. The space X∗ is certainly not a topological ball. This disproves a version of

the conjecture of Lizhen Ji [22], p. 82, that an equivariant compactification of X such that the

closure of each flat is a topological ball should be homeomorphic to the closed unit ball in the

tangent space TxX. The closures of all maximal flats in X∗ are in fact contained in XR and are



14 BORIS GOLDFARB

topological balls. The construction of X∗ demonstrates that continuity of the extended action

must be a necessary condition in the statement.

5.5. Boundaries of Arithmetic Groups. The notion of a boundary for a discrete group has

roots in the theory of Fuchsian groups. Classically, the boundary circle is used to classify and

study isometries of the hyperbolic disk. One attempt to incorporate existing generalizations

in a formal definition for a discrete group Γ is due to M. Bestvina.

5.5.1. Definition (Bestvina [2]). A boundary of Γ is a topological space Y such that there is a

space Z with the following properties:

(1) Z is compact, metrizable, finite-dimensional, contractible and locally contractible con-

taining Y as a Z-set,

(2) Z − Y has a free properly discontinuous action of Γ with compact quotient,

(3) for every open cover U of Z and every compact subset K ⊆ Z − Y all but finitely many

translates of K are U-small.

In the literature on Novikov conjecture, such a compactification Z of EΓ = Z−Y is called good ;

property (3) is usually expressed by saying that the action of Γ on Z − Y is small at infinity .

This definition is motivated by useful geometric boundaries for torsion-free Gromov hyper-

bolic groups and CAT(0) groups. The latter class includes all uniform lattices in a semisimple

Lie group in which case Y is the ideal boundary of the associated symmetric space X.

The construction of X∗ provides a useful generalization of the notion of boundary, namely

Y = X∗ −X, in this case of an arithmetic group Γ . The space X∗ contains X as an open dense

Γ -subset, in particular Γ acts continuously on X as before.

5.5.2. Definition. The metric that we use in X is a transported Γ -invariant metric. It can be

obtained by first introducing a bounded metric in the compact space X/Γ , then taking the

metric in X to be the induced path metric where the measured path-lengths are the lengths of

the images in X/Γ under the covering projection.

With this metric, the diameter of a fundamental domain Ω is bounded by some number D as

is also the diameter of any Γ -translate of the domain. Beware that this metric is very different

from the one Borel and Serre used in section 8.3 in [3]. The general metrization theorems of

Palais they used produce metrics which are bounded at infinity.

The important property of this metric is that by choosing a base point x0 in Ω and taking its

orbit under the Γ -action we can embed the group Γ with a word metric quasi-isometrically in

X. Now X and Γ have the same large scale geometry, therefore the boundary Y must contain

the same asymptotic information about both spaces, and we can think of Y as a boundary of

Γ . The accumulation points of Γ ⊆ X∗ is the analogue of the limit set of a Fuchsian group; it is

a closed subset of Y . In Example 4.2.8, this boundary is a subset of the the top and the bottom

circles of the cylinder X∗ −X with the lexicographic topology.

The space Y does not satisfy many of the properties from Definition 5.5.1. From sections

5.1—5.3, we know it does satisfy a weakening of property (1) and the crucial property (2). We

also find it natural to insist that the boundary be Γ -equivariant, and our Y satifies this additional

property together with all of Bestvina’s examples. On the other hand, this assignment of the

boundary Y to Γ is not canonical and depends on the chosen continuous model X of Γ . One

should not expect even the weak naturality properties established in [2] for the boundaries of

Definition 5.5.1. It seems that naturality is restricted to hereditary properties such as the fact

that for an algebraic subgroup H of G, Y(H) embeds in Y(G).
Property (3) is the next most desirable feature. The way it comes up in Bestvina’s context

is always via geodesic combings on the groups and the spaces Z − Y which are essential for

the constructions of the corresponding boundaries Y . According to [11], nonuniform arith-

metic lattices are not combable. This suggests that failure of property (3) should be generally

unavoidable for arithmetic groups.
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In order to make the boundary Y useful in proving the Novikov conjecture for Γ , one needs

to look for certain equivalence classes of boundary points and relativize the notion of size for

the translates of compact subsets K.

5.5.3. Definition. For any subset K of a metric space (X,d) let K[D] denote the set {x ∈ X :

d(x,K) ≤ D}. If (X,d) is embedded in a topological space X∗ as an open dense subset, a set

A ⊆ Y = X∗ − X is boundedly saturated if for every closed subset C of X̂ with C ∩ Y ⊆ A, the

closure of each D-neighborhood of C\Y for D ≥ 0 satisfies (C\Y)[D]∩ Y ⊆ A.

It is easy to see that in sufficiently nice spaces, including all spaces in this paper, the col-

lection of boundedly saturated subsets of Y is closed with respect to taking complements,

intersections and unions. In other words, it is a Boolean algebra of sets BA. It is clearly inde-

pendent of the choice of bounded metric in X/Γ . Since all arithmetic subgroups of the given G
are commensurable, this gives an invariant of arithmetic subgroups of G.

Our next goal is to generate a convenient subalgebra of BA.

5.5.4. Definition (Cubical Cellular Decompositions). Let Ir = [−1,1]r be the r -dimensional

cube embedded in Rr . It has 2n vertices indexed by various r -tuples with entries either 1 or

−1. Let us denote this set by V(−1). We also say that V(−1) is derived from I(−1) = {±1} and

write this as V(−1) = I
r
(−1). Now define the following subsets of I:

I(0) = {−1,0,1}, I(1) =

{
−1,−

1

2
,0,

1

2
,1

}
, . . .

where

I(i) =

{
−1, . . . ,

k

2i
,
k+ 1

2i
, . . . ,1

}
, k ∈ Z, −2i ≤ k ≤ 2i,

for i ∈ N. We also get the corresponding derived subsets of Ir :

V(0), V(1), . . . , V(i) = {vi(s1, . . . , sr )} = I
r
(i), . . .

where

vi(s1, . . . , sr )
def
=

(
s1
2i
, . . . ,

sr
2i

)
, sj ∈ Z, −2i ≤ sj ≤ 2i.

At each stage V(i) is the set of vertices of the obvious cellular decomposition of Ir , where the

top dimensional cells are r -dimensional cubes with the j-th coordinate projection being an

interval [
kj
2i
,
kj + 1

2i

]
⊆ I, 1 ≤ j ≤ i.

These cells can be indexed by then-tuples {(k1, . . . , kj , . . . , kr ) : −2i ≤ kj < 2i}, the coordinates

of the lexicographically smallest vertex, 2(i+1)r of the r -tuples at all.

These decompositions behave well with respect to the sequence of collapses from §4.1 and

induce cellular decompositions of the result from the (−1)-st derived decomposition of Ir and

the corresponding CW-structure in Br . We will refer to this isomorphism of CW-structures as

Υ : ∂Br → τN .

There are cubical analogues of links and stars of the usual simplicial notions. Thus the star

of a vertex is the union of all cells which contain the vertex in the boundary. The open star is

the interior of the star. For the i-th derived cubical decomposition, the open star of the vertex

vi(s1, . . . , sr ) will be denoted by Staro
(
vi(s1, . . . , sr )

)
. These sets form the open star covering

of Ir .

By vertices in δN we mean the image Υρ
(
V(n) ∩ ∂I

r
)
. Let v ∈ Υρ

(
V(n) ∩ ∂I

r
)

then

Staro
(
(Υρ)−1(v)∩ V(n)

)
=

⋃

vn∈V(n),Υρ(vn)=v

Staro(vn)

is an open neighborhood (the open star) of (Υρ)−1(v), and, in fact,

Staro
n(v)

def
= Υρ(Staro

(
ρ−1

Υ
−1(v)∩ V(n))

)
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is an open neighborhood of v which we call the open star of v . The map Υρ is bijective in the

interior of Ir , so Staro
n(v) can be defined by the same formula for v ∈ Υρ

(
V(n) ∩ intIr

)
.

In order to determine the geometry of open sets in X̂ and ultimately saturated sets in Y , we

need to study the geometric question: describe the family of flats asymptotic to the given two

chambers or walls at infinity of a symmetric space X. One answer is well-known in terms of

horocycles.

5.5.5. Theorem (Im Hof [21]). If y , z ∈ ∂X are contained in Weyl chambers W(y), W(z) ⊆ ∂X,

let Ny , Nz be the nilpotent components in the corresponding Iwasawa decompositions. For an

arbitrary point x ∈ X the intersection of the horocycles Ny · x ∩Nz · x parametrizes the set of

all flats asymptotic to both W(y) and W(z).

The minimal strata e(B) for B ∈ BR parametrize the flats which are asymptotic to W(B).

5.5.6. Definition. Define the subsets A(B, B′) ⊆ e(B) to be the geodesic projections qB(NB ·
x ∩NB′ · x) in the sense that they consist of a ∈ e(B) such that the flat q−1

B (a) is asymptotic

to W(B′).

This parametrization is more convenient for us because each ξ ∈ e(B) is precisely the point

of intersection e(B) ∩ q−1
B (ξ) = {ξ}. Now given an open subset U ⊆ e(B), the corresponding

open set C(U) ⊆ X̂ can be described as �
(
clq−1

B (�U)
)
, and q−1

B (�U) can be identified easily by

examining the closure of each flat q−1
B (ξ), ξ ∉ U .

5.5.7. Proposition. Given B, B′ ∈ BR, the flats which are asymptotic to both W(B) and W(B′)
are parametrized by

A(B, B′)
σ
�A(B′, B).

If S ⊆A(B, B′) then σ(S) ⊆A(B′, B) is contained in the closure cl
(
q−1
B (S)

)
.

5.5.8. Corollary. If B, B′ ∈ BR and U ⊆ ε(B) is an open subset then y ∈ ε(B′) is contained in

C(U) if and only if either

(1) y ∈ e(B′) and its orthogonal projection πB onto A(B′, B) is not contained in the subset

AB(U) corresponding bijectively to U ∩A(B, B′), or

(2) y ∈ ∂e(B′) and y ∉ cl
(
π−1
B AB(U)

)
.

The intersections of C(U) with ε(P), P ∈ PR\BR, are open product subsets.

From this description easily follows

5.5.9. Proposition (Weak Summability). Given arbitrary open subsets U1 and U2 ⊆ ε(B), it may

not be true that

C(U1 ∪U2) = C(U1)∪C(U2).

However, the open stars in any derived decomposition of ε(B) from Definition 5.5.4 do have this

property.

5.5.10. Corollary. Given a finite collection of open subsets Ω1, . . . ,Ωn ⊆ X̂ with ε(B) ⊆
⋃
Ωi

there is another finite collection of open subsets U1, . . . , Um ⊆ ε(B) so that

• ε(B) ⊆
⋃
Uj ,

• ∀ 1 ≤ j ≤m ∃ 1 ≤ i ≤ n with C(Uj) ⊆ Ωi,
• C(

⋃
Uj) =

⋃
C(Uj).

5.5.11. Theorem. The following subsets of Y are boundedly saturated:

• each ε(P) = s(P)× RuP(R)∗ for P ∈ PR\PQ,

• each product cell in ε(P)∩ Y for all P ∈ PQ.

This defines a partition E of Y into disjoint boundedly saturated subsets.
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Proof. The proof is entirely similar to that in section 8 of [15]. One uses Proposition 5.5.7 and

Corollary 5.5.8 to create ‘barriers’ consisting of translates of fundamental domains that isolate

the boundedly saturated subsets of the boundary. As explained in those proofs, one may use

general Siegel fundamental sets in place of the geometrically explicit fundamental domains of

Garland–Raghunathan for rank one lattices or Grenier for lattices in SL3. 5

5.5.12. Definition. The boundedly saturated sets identified in Proposition 5.5.11 generate a

Boolean subalgebra of sets BA.

6. Proof of Theorem 1

The general plan of the proof is common with [7, 8, 15, 16]

6.1. Outline. Given a discrete group Γ whose classifying space BΓ is a finite complex, we assume

there is a compactification Z of the universal cover EΓ such that the free action of Γ on EΓ
extends to Z , and Z is acyclic with respect to the modified Čech homology as in Definition

5.3.1, with coefficients in K(R). The idea is to interpret α(Γ) as a Γ -fixed point map of two

Γ -spectra in the following commutative diagram.

BΓ+ ∧K(R)
α(Γ)
---------------------------------------------------------------------------------------------------------------→ K(R[Γ])

'

y '

y

RΓ
π Γ∗
---------------------------------------------------------------------------------------------------------------→ T Γ

Here R and T are the K-theory spectra of certain categories of free R-modules parametrized

over EΓ × I. The important feature is that the resulting spectra depend only on the global

behavior of the supports of the modules. This is manifested in the equivalence R ' ȟ(Y ;KR)
when Γ satisfies the assumptions above.

There are canonical maps from fixed points to homotopy fixed points and the commutative

square

RΓ
π Γ∗
---------------------------------------------------------------------------------------------------------------→ T Γ

ρ∗
y

y

RhΓ
πhΓ∗
---------------------------------------------------------------------------------------------------------------→ T hΓ

where ρ∗ happens to be an equivalence in this situation.

6.1.1. Definition. Let C1 and C2 be two closed subsets of Y . The pair (C1, C2) is called excisive if

there is an open subset V ⊆ Z such that C2−C1 ⊆ V and V ∩C1 ⊆ C2. For two arbitrary subsets

U1 and U2, the pair (U1, U2) is excisive if every compact subset C of U1 ∪ U2 is contained in

C1∪C2 where (C1, C2) is an excisive pair of closed subsets with Ci ⊆ Ui. A collection of subsets

Ui ⊆ Y is called excisive if every pair in the Boolean algebra of sets generated by Ui is excisive.

We make an additional assumption that the boundary Y = Z − EΓ contains a Γ -invariant

family F of excisive boundedly saturated subsets that cover Y . This guarantees that there is a

map

σ : T -→ holim
←−−−−
A∈A

NA∧K(R),

where A is a contractible Γ -category of finite rigid coverings A of Y by the sets from F . The

composition σhΓ ◦πhΓ∗ is induced from a Γ -equivariant map

θ : ȟ(Y ;K(R)) = holim
←−−−−

U∈CovY

NU ∧K(R) -→ holim
←−−−−
A∈A

NA∧K(R)

which we describe next. It is a general fact that if θ is a (nonequivariant) equivalence then θhΓ is

also an equivalence, and one has α(Γ) as the first map in a composition which is an equivalence.
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Note that very little is known about the other maps in the composition but this still makes α(Γ)
a split injection.

In the simplest case when F are open sets, θ coincides with the restriction map induced

by the inclusion A ⊆ CovY . To identify θ in our more general situation, we need to make a

sensible choice of boundedly saturated sets F .

The following is the summary of the required conditions onA.

(1) There is a subcategory OrdY of CovY such that the inclusion  : OrdY ↩ CovY in-

duces a weak homotopy equivalence;

(2) For each set U = φ(y) for φ ∈ OrdY there is an open set V(U) ⊆ X̂ with the following

properties: (1) V ∩Y = U and (2) {V(U) : U ∈ imφ}OrdY form a cofinal system of finite

coverings of Y by open subsets of X̂;

(3) Given a covering φ ∈ OrdY , there is an assignment (which we call saturation and

denote by sat) of a based boundedly saturated subset Ay ⊆ Y to each set φ(y) so that

sat induces a natural transformation

sat∗ : N ∧K(R) -→ Nsat( )∧K(R),

and the collection A above is precisely the result of applying saturation to OrdY . We

require the resulting collection to be excisive in the sense defined in [8]. We require that

each morphism sat∗ is a weak equivalence of spectra by Quillen’s Theorem A applied

to sat∗ : N → Nsat( ).

6.2. Orderly coverings. We will construct a cofinal family of finite open coverings of Y that

satisfies conditions (1) and (2). Recall that a rigid covering β ∈ CovY of Y consists of pairs

x ∈ U(x) where x ∈ Y and the values U(x) lie in a finite open covering of Y . Let U be the

underlying finite open covering imβ.

Fix a Borel subgroup B ∈ BR. There is a number `B ∈ N with `B ≥ nB and an open neighbor-

hood UB 3 f(B) in XS with

PreInf`B ,UB(v)
def
= Y ∩C

(
Staro

`B
(v)

)
∩ p−1UB ⊆ β(x)

for each v ∈ V(`B) and some x ∈ Y . Let I be the set consisting of all P ∈ PR \ BR such that

f(P)∩ �UB 6= ∅. Let F consist of all B′ ∈ BR such that

A(B, P)∩ Staro
`B
(v) = ∅ and A(B, P)∩ Staro

`B
(v) 6= ∅.

Now we can define VB(U) ⊆ UB such that

UB\VB = UB ∩
⋃

B≮P∈I

f(P)

and

Inf`B ,UB(v)
def
= PreInf`B ,UB(v)∩ p

−1(VB)\
⋃

B′∈F

ε(B′).

The union of these sets over all v ∈ V(`B) is an open neighborhood of ε(B) in Y by the weak

summability property.

Using compactness of X̂, compactness of each e(P) ,̂ P ∈ PR, and relative compactness of

ε(P), one can choose finite subsets B ⊆ BR and P ⊆ PR\BR and numbers 0 < mP , kP ∈ N for

P ∈ P satisfying

(1) ∀B ∈ B ∃P ∈ P such that B < P ,

(2) Y =
⋃
B∈B Inf`B ,UB(v)∪

⋃
P∈P ε(P),

and the following properties: fix P ∈ P and use the notation B(P) := {B ∈ B : B < P}, then

(3) for some 0 < kP ∈ N and w(P) ∈ ∂ê(P)∩ V(k)

Y ∩ δ
(
ê(P)

)
=
⋃

B∈B

Inf`B ,UB(v)∩ p
−1Staro

kB
(w)∩ δ

(
ê(P)

)
,
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(4) Om,k,P refines the restriction of U to ε(P),
(5) mP ≥maxB∈B(P)(`B), kP ≥maxB∈B(P)(kB),
(6) each open star in the associated kP -th cubical derived decomposition of ε

(
ê(P)

)
contains

at most one point from {W(B) : B ∈ B(P)},
(7) for each w ∈ ∂ê(P)∩ V(kP ) there exists B ∈ B such that

either W(B) ∈ Staro
kP
(w) or p−1

(
Staro

kP
(w)

)
⊆

⋃

v∈V(`B)

Inf`B ,UB(v).

For a Borel subgroup B(w) define

Ord`B ,UB ,kP (v ;w)
def
=
(
Inf`B ,UB(v)\e(P)̂

)
∪ p−1Staro

kP
(w)

and

ExcOrd`B ,UB ,kP (v ;w)
def
= Ord`B ,UB ,kP (v ;w)\

⋃

B<P ′
e(P ′) .̂

Consider the category ExcOrdY of finite open coverings by the sets (Exc)Ord`B ,UB ,kP (v ;w)
and Om,k,P for all choices of β, B, P, etc., and generate all finite rigid coverings ω ∈ CovY
which satisfy

• imω ∈ ExcOrdY ,

• ω(y) = Ord`P ,k(v ;w) for some P ∈ P if and only if y ∈ ε(P),
• if y ∈ ε(B) for some B ∈ P then

ω(y) = ExcOrd`P(w),k(v ;w)

for some v where χ
(
W(B)

)
= Staro

k(w) for a fixed finite rigid covering χ of εX(M0
1) by

open stars Staro
k(z), z ∈ V(k),

• ω(y) ∈ Om,k if y ∈ ε(P).

The resulting coverings form a full subcategory PreOrdY ⊆ CovY . This procedure may look

asymmetric as to the roles of maximal strata played in corners

X(B) = e(P ′)̂∪ e(P ′′)̂
when P ′, P ′′ ∈ P and y ∈ ε(B): there is a choice of w and, hence, of particular P (j) involved

here. The asymmetry disappears after the next step when one generates the smallest full

subcategory OrdY of CovY containing PreOrdY and closed under intersections.

The category OrdY is not cofinal; however the map

∗ : ȟ(Y ;KR) -→ holim
←−−−−
OrdY

(N ∧KR)

induced by the inclusion  : OrdY ↩ CovY is a weak homotopy equivalence by Quillen’s The-

orem A, cf. [15].

6.3. Definition of A. The boundedly saturated coverings we produce are outcomes of actual

saturation with respect to a Boolean algebra of boundedly saturated sets. The construction is

by induction on the rank. Saturation enlarges the sets in OrdY using the chosen coverings

αB , B ∈ B, and πP , P ∈ P\B. It suffices to present the construction of boundedly saturated

coverings α(ω,αB , πP) based on generators ω ∈ PreOrdY .

6.3.1. Definition. For B ∈ BR(G) use the notationαi,B for the finite rigid covering of the cell σi,B
given by αi,B(y) = αB(y)∩σi,B for each y ∈ σi,B . The same formula associates αi,B(y) ⊆ σi,B
to each y ∈ ∂e(B). For P > B of type i, define ΠB,P : δe(B) → imπP by ΠB,P(y) = αi,B(y) ×(
ê(P)

)S
Q where B′ ∈ BR and the vertices v , w are from

ω(y) = ExcOrd`B′(w),UB′ ,kP (v ;w).
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Now set

αint(y) =




πP(y) if y ∈ ε(P), P ∈ P∩PQ

ω(y)\ε(B)∪ΠB,P(y) if y ∈ ε(B), B ∈ B,

ω(y)∪ΠB,P(j)(y) if y ∈ σj,B , B ∉ B,

ω(y) otherwise.

The saturation of a subset S with respect to a Boolean algebra of sets is the union of elements

of BA which intersect S nontrivially. Define α(β) as the finite rigid covering of Y by the satu-

rations of sets S in αint(β) with respect to the Boolean algebra BA from Definition 5.5.12. The

equivariant categoryA is the collection of all such α.

Each of the two steps in this construction preserves the homotopy type of the nerve of ω
and αint. Now the natural transformation N → Nαint( ) → Nα( ) is composed of homotopy

equivalences. So

holim
←−−−−
OrdY

(N ∧KR)
'
------------------------------------------------→ holim

←−−−−
OrdY

(Nαint( )∧KR)
'
------------------------------------------------→ holim

←−−−−
OrdY

(Nα( )∧KR).

This procedure also defines a left cofinal saturation functor sat : OrdY →A so that the induced

map

sat∗ : holim
←−−−−
OrdY

(Nα( )∧KR)
'
------------------------------------------------→ holim

←−−−−
A

(N ∧KR)

is a weak equivalence. The composition of all equivalences above is the required equivalence

θ : ȟ(Y ;KR) ' holim
←−−−−
A

(N ∧KR).

This completes the proof of Theorem 1.
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