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ABSTRACT. New compactifications of symmetric spaces of noncompact type X are constructed
using the asymptotic geometry of the Borel-Serre enlargement. The controlled K-theory associ-
ated to these compactifications is used to prove the integral Novikov conjecture for arithmetic
groups.

1. STATEMENT OF THE RESULTS

There is a long history of technique called compactification or attaching a boundary in the
study of noncompact symmetric spaces and domains. We will use this term to describe an
embedding of the symmetric space as an open subset in a compact Hausdorff space. The
boundary points usually carry asymptotic information about the symmetric space which is
useful in harmonic analysis and the study of random walks on symmetric spaces. Sometimes
these procedures are directly related to compactifications of arithmetic quotients of symmetric
spaces. These quotients are moduli spaces of interesting objects, and the boundary points
represent the degenerate versions of these objects.

A class of constructions which serve both ends is called Satake compactifications. Each Sa-
take compactification X3 is a union of certain strata attached to the symmetric space X, each
stratum corresponding to a parabolic subgroup of the connected isometry group of X. Now
assume that G is a semisimple linear algebraic group defined over Q and that X is the sym-
metric space of maximal compact subgroups of the real points G(R). Attaching only the strata
corresponding to Q-parabolic subgroups gives an enlargement X(SQ of X (no longer compact)
which is invariant under any arithmetic subgroup I' of G. After a suitable change of topology
in X3, the quotient X,/T becomes a compactification of X /T.

Another less singular compactification of X /T was constructed by Borel and Serre following
the same blueprint. There is an enlargement X&S of X by certain strata corresponding to Q-
parabolic subgroups of G. The quotient X&S/F is again compact but the strata are chosen so
that the quotient becomes the classifying space BT for a torsion-free arithmetic group which
makes this construction useful for group cohomology computations. There is also an analogue
of the Satake compactification of X in this context. Attaching Borel-Serre strata corresponding
to all R-parabolic subgroups one gets an enlargenment Xﬁs of X which is no longer compact.
When the R- and Q-ranks of G coincide, the spaces Xﬁs and X&S fit together particularly well.
We will be interested in this split rank situation which includes all classical groups G.

Following S. Zucker [31] we see that there is a continuous map f from X, ﬁs onto the compact
Satake space X5 which restricts to a continuous map from X&S onto X& with either topology.
We will construct a compactification X* of X by attaching a boundary to each fiber of the map
f and introducing a compact Hausdorff topology on the resulting set so that f extends to a
continuous map q: X* — X5. Even though the topological space X* is not metrizable, the
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construction and interpretation of the boundary points are very geometric. We summarize the
most important properties in the first theorem.

Theorem 1. Given the symmetric space X associated with a split rank algebraic group G, there
is an embedding of X in a space X* such that

(1) X* is compact and Hausdorff,

(2) X is an open dense subset of X*; in fact, the Borel-Serre enlargementX«%S of X is an open
dense subset of X*,

(3) X* is acyclic in the appropriate Cech sense,

(4) the isometries of X extend to continuous maps of X*,

(5) there are continuous equivariant maps from X* to other compactifications of X such as
those of Satake, Bailey-Borel, and Martin at the bottom of the spectrum.

The compactification X* with its properties is a major geometric component in splitting the
integral assembly map in algebraic K-theory for arithmetic lattices, which is our other main
result. We refer to the proceedings [13] for the background, motivation, and careful discussion
of Novikov and related conjectures.

Theorem 2. IfT is a torsion-free arithmetic group in an algebraic group of split rank, and R is
an arbitrary ring, the assembly map «: h(I,K(R)) — K(R[I']) from the homology of the group
I' with coefficients in the K -theory spectrum K (R) to the K -theory of the group ring R[T] is a split
injection. Here K (A) stands for the nonconnective K -theory spectrum of the ring A.

The argument uses a refinement of the methods previously successful where geometry of
the group possessed some manifestation of nonpositive curvature [7, 8, 15, 16].

We should point out that the topological Novikov conjecture on homotopy invariance of
higher signatures has been known for torsion-free lattices in algebraic groups for some time,
due to various authors. It is also known, in its integral K-theoretic form as here, for cocompact
lattices, cf. [7]. On the other hand, the nonuniform lattices in higher ranks are not bicombable
[11, 12] which excludes the possibility of applying techniques from CAT(0) geometry and its
analogues to these groups.

A concrete class of arithmetic groups are congruence subgroups defined as the kernels of
surjective maps G(Z) — G(Zp) induced by reduction mod £ for various levels £. The congruence
subgroups of SL,, of all levels £ # 2 are torsion-free, and every arithmetic subgroup contains a
suitable congruence subgroup according to the solution of the congruence subgroup problem.
This identifies a particular system of groups to which our theorem applies.

The paper is organized as follows. In section 2, we review necessary details from algebraic
groups mainly to establish notation. In section 3, we describe the constructions of Satake
and Borel-Serre and maps between them that we use in section 4 to construct the space X*.
Section 5 establishes topological properties of X* and studies certain geometric properties
of the boundary in X*. Section 6 shows how to apply these properties to split the integral
assembly maps.

2. SYMMETRIC SPACES. ALGEBRAIC GROUPS. ARITHMETIC SUBGROUPS

2.1. Symmetric Spaces. A symmetric space of noncompact type is a complete simply-connected
Riemannian manifold of nonpositive sectional curvature such that for each point x € X the
geodesic symmetry sy : X — X given by exp,. (v) — exp, (—v) for all v € Ty X is an isometry of
X, and X is not compact but contains no Euclidean space as a Riemannian factor.

The connected isometry group G = Ip(X) is a semisimple Lie group with no compact factors
and with trivial center. It is transitive on X, and X = G/K where K is the maximal compact
subgroup of G stabilizing a point x € X. If G is a semisimple Lie group with finite center and no
compact factors, and if K is a maximal compact subgroup, then the homogeneous space G/K is a
symmetric space of noncompact type. A k-flat in X is a complete totally geodesic k-dimensional
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submanifold with zero sectional curvature. The rank of X is the maximal dimension of a k-flat
in X.

Every nonpositively curved manifold may be compactified by attaching the ideal boundary
0X and introducing the cone topology on €X = XU 0X. The points of 0.X are asymptotic classes
of geodesic rays, so the isometric action of G = Ip(X) on X extends to 0X.

2.2. Linear Algebraic Groups. Given a linear algebraic group H defined over a subfield k of the
complex numbers, we use the notation H (k) for the k-points of H. The connected component
of the identity is denoted by H?. The Zariski topology is always understood in H(k) when
k # R, and the classical Lie group topology when k = R. If H is connected, put

HE N ker(x?),
XEX(H)
where X (H) is the group of rational characters. The group °H is normal in H and is defined
over k. Let S be a maximal k-split torus of the radical RH. Then H(R) = A x °H(R), a semi-
direct product, where A = S(R)?, and “H(R) contains every compact subgroup of H(R), and
also, if k = Q, every arithmetic subgroup of H. If R,,H denotes the unipotent radical of H, then
Ly = H/RyH is the canonical reductive Levi quotient. It is also defined over k. Let My = °Ly.

2.2.1. Notation. An object associated to the reductive Levi quotient Ly rather than the group
H itself will usually indicate this by wearing a ‘hat’.

The totality of all parabolic subgroups of H will be denoted by P = P(H). If k' < kis a
subfield then P, = Py’ (H) will denote all parabolic subgroups defined over k’. Similar notation
B = B(H) and By = By (H) will be used for Borel subgroups. The projection mg: H —
Ly induces a bijection Py (H) « Py(Ly) preserving conjugacy classes over k, and likewise
Pr (L) < Py (Li/Cr), where Cy is the center of Ly.

2.2.2. Notation. Let Tu pe a maximal k-split torus of Ly /Cy. If Ay is a system of §im[31e roots
with respect to T, let P@A(resp. Pg) denote the standard k-parabolic subgroup of Ly /Cy (resp.
of H) relative to Ty and Ay corresponding to the choice of ® < Ap.

This correspondence ® — Pg defines a lattice isomorphism between the power set of Ay =
Ap and the set of standard parabolic k-subgroups of H. Moreover, each P € Py (H) can be
written as "Pg := hPgh~! for some h € H(k) and a uniquely determined ®(P) < Ap.

Now suppose H is a semisimple group with a set of simple Q-roots A. They are the vertices
in the connected Dynkin diagram. Let T be a nonempty subset of A. For ©® < A let k7(®) be
the union of all connected components of ® that meet T.

2.2.3. Definition. Given any P € Pq(H), it determines a subset® = ©(P) < A such that P = 9Pg.
Let Q = 9P, (p) and call Q a T-connected parabolic subgroup associated to P.

Let Py be the standard minimal parabolic Q-subgroup of G, let A be the maximal Q-split
torus of G contained in Py, and K be the maximal compact subgroup in G(R) whose Lie algebra
is orthogonal (relative to the Killing form) to the Lie algebra of A(R). Let

Ar={ace AR :x(a) <t,Vx € A}.

Recall that Py = Zg(A) - Ry (Pg). Furthermore, Zg(A) =~ A - F where F is the largest connected
Q-anisotropic Q-subgroup of Z;(A). From the Iwasawa decomposition, G(R) = K - P(R). This
yields the following decomposition:

G(R) =K - A(R)? - F(R) - RyPo(R).
Recall that a Siegel set in G(R) is a set of the form
Ztnw =K-Ar-n-w,
where n and w are compact subsets of F(R) and Ry, Py(R) respectively.
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2.2.4. Theorem (Borel). There are a Siegel set X = %t ., and a finite set C < G(Q) such that
Q = C - 3 is a fundamental set for T.

2.3. Arithmetic Groups. Let G be a linear algebraic group defined over Q and write G(Z) =
G(Q) N GLy(2).

2.3.1. Definition. A subgroup I' of G(Q) is arithmetic if T and G(Z) are commensurable, that is,
if the subgroup I' n G(Z) has finite index in both I and G(Z). A discrete group I is arithmetic
if it is isomorphic to an arithmetic subgroup of some group G.

Consider the real points G(R) of G. Itis areal Lie group, and I' = G(R) is a discrete subgroup.
When G is semisimple, I' acts freely and properly discontinuously on the symmetric space
X associated to G(R). The quotient manifold M = X/T' is not necessarily compact unless
rank G = 0 but always has finite invariant volume, that is, I' is a nonuniform lattice in G(R).
According to Margulis, such lattices are always arithmetic if G is simple with finite center, and
rank(G) = 2. This is true for nonuniform lattices in SL,, for n = 3.

2.3.2. Example. The most prominent class of arithmetic groups are congruence subgroups de-
fined as the kernels of surjective maps G(Z) — G(Zp) induced by reduction mod ¥ for various
levels £. Every arithmetic group contains a normal torsion-free subgroup of finite index, but,
according to Minkowski, the congruence subgroups of special linear groups SL;, of all levels
{ + 2 are themselves torsion-free. Same is true for other classical groups such as symplectic
groups Sp»,,. In these cases, when rank(G) > 2, every arithmetic subgroup contains a suitable
congruence subgroup by the solution of the congruence subgroup problem.

3. ENLARGEMENTS OF THE SYMMETRIC SPACE

3.1. Borel-Serre Enlargements. Let G be a semisimple algebraic group defined over Q and T’
be an arithmetic subgroup. It is a lattice in the real Lie group of real points G(R) and acts on
the symmetric space of maximal compact subgroups X = G(R)/K so that X is a model for ET
if I' is torsion-free.

3.1.1. Definition. An enlargement of a topological space is an embedding in a superspace as
an open subset. A compactification is an enlargement to a compact Hausdorff space.

Borel and Serre [3] form a contractible enlargement Xq of X which depends only on the Q-
structure of G so that the action of I on X extends to a proper action on Xq. (This is the space
called X(gs in Theorem 2.) It is a new model for ET but with the free action that is cocompact.
Our goal is to construct a compactification X* of Xq.

Using notation from section 2.2, let P € Tk(G) and let Sp denote the maximal k- split torus
of Cp, and Ap = Sp(R)°. The dimension of Ap is the parabolic k-rank of P. To each x € X
is associated the Cartan involution 8, of G that acts trivially on the corresponding maximal
compact subgroup. There is a unique O-stable lift Ty: Lp(R) — P(R) which gives 0y-stable
liftings Apx = Tx(Ap), Spx = Tx(Sp(R)), and Mp x = Tx(Mp(R)) of the subgroups Ap, Sp(R),
and Mp(R).

3.1.2. Definition. The geogesic action of Ap on X is given by aox = ax - x, where ay = Tx(a) €
Ap x is the lifting of a € Ap.

Now X can be viewed as the total space of a principal Ap-bundle under the geodesic action.
The group Ap can be openly embedded in RE@rd(A-0(P)) vig
Ap — ([Rjt)card(ﬁ—@(P))_

Let Ap be the ‘corner’ consisting of Ap together with positive card(A — ©(P))- -tuples where the

entry o is allowed with the obvious topology making it diffeomorphic to (0, co]@rd(A-0(P) The
group Ap acts on Ap, and the corner X (P) associated to P is the total space of the associated
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bundle X XA, Ap with fiber Ap. Denote the common base X/Ap. of these two bundles by e(P).
In particular, e(G°) = X

3.1.3. Definition. The Borel-Serre enlargement
Xk= |]| e@
PEPL(G)

has a natural structure of a manifold with corners in which each corner X (P) = |_ng pe(Q) is
an open submanifold with corners. The action of Q (k) on X extends to the enlargement Xy.
The faces e(P), P € Py (G), are permuted under this action.

We will borrow a term from [32]. Let gp: X — e(P) denote the bundle map. For any open
sullset V < e(P) a cross-section o of gp over V deter;nines a translation of V from the boundary
of Xy, k = Q or R, into the interior X. For any t € Ap put

Ap(t) ={a e Ap: a® > t*forall x € Ap},

where Ap is the set qf those simple roots with respect to a lifting of Tp that occur in Ry P
(transported back to Ap). It is complementary to ®(P) in A.

3.1.4. Definition. For any cross-section o (V), a set of the form W(V,o,t) = Ap(t) o (V) will
be called an open set defined by geodesic influx from V into X. There is a natural isomorphism

Uo: Ap(t) XV = W(V,0,t)
which extends to a diffeomorphism
flo: Ap(t) x V= W(V,0,t).
Now W (V, o, t) is a neighborhood of V in Xy (for k = Q or R) with
fo ({(e0,...,0)} X V) =
We will call it an open neighborhood defined by geodesic influx from V into X.

All of that done so far works for more general homogeneous H-spaces than symmetric spaces
for semisimple H. Borel and Serre call them spaces of type S—k. For each Q € Px(G), e(Q) is
such a space. So

eQr= || e= || e®

PePr(Q) Q2PeP(G)

can be formed; it is diffeomorphic to the closure e e(Q) of e(Q) in X. In fact, whenever P < Q,
AQ is canonically a subgroup of Ap so that the geodesic actions are compatible. The group Ap
acts geodesically on e(Q) through AP/AQ with quotient e(P). The stratum e(P) < e(Q) is the
set of limit points of this geodesic action.

Recall that the parabolic k-subgroups index the simplices W (P) of the Tits k-building of G.
The dimensions of the strata e(P) and the incidence relations among their closures reflect the
structure of the building as follows:

dime(P) + dimW(P) =dimX -1,
eP)ne(Q)+ D <= eP)ce(Q) = W(Q)cW(P) = PcQ.

The minimal parabolic (Borel) k-subgroups correspond to the strata e(P) of dimension dim X —
ranky G, and to the top simplices of the building.

3.1.5. Remark. When B is a Borel R-subgroup of G, we have the Iwasawa decomposition G(R) =
KApNg(R). Then X ~ ApNg(R), and the geodesic action of Ag on X coincides with multiplica-
tion. The quotient e(B) can be viewed as the underlying space of the nilpotent group Np(R).
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3.2. Actions on Strgta. For k = Q or R, let P be a parabolic k-subgroup of G. Recall the
projection 1tp: P — Lp from §2.2. The real points of the reductive Levi quotient split as a direct
product

Lp(R) = Mp(R) X Ap,
where Mp = 9L p, and there is the Langlands decomposition

P([R) = MP,xAP,xLP,x-

Recall that K is the stabilizer of x in G(R) acting on X. Then Kp x = Kx N P(R) is the stabilizer
of x in P(R). The Borel-Serre stratum e(P) = P(R)/Kp xAp x is a space of type S for P. Notice
that it is acted upon from the left by R, P(R).

3.2.1. Definition. The quotient é(P) is called the reductive Borel-Serre stratum.

Denote the quotient map by up: e(P) — é(P). Let Kp = 11p (Kpx), then Kp is a maximal
compact subgroup of Mp(R) and is lifted to Kp x by Ty. From the Langlands decomposition,
é(P) = RyP(R)\P(R)/KpxApx = Lp(R)/KpAp = Mp(R)/Kp
is the space of type S associated to the reductive group Lp: in general, it may not be connected,
and it may have trivial R* factors.

3.2.2. Proposition. Foreach P € Pr(G), the principal R, P (R)-fibration pup extends to a principal
fibration
fip: e(P) — é(P).

Proof. Let Q < P be proper parabolic subgroups with the unipotent radicals R,Q = R, P, then
Q determines a parabolic subgroup
QP = mp(Q) = Q/RyP < Lp = P/RyP

with the unipotent radical R,QF = Ry,Q/R,P. Now Agr is canonically identified with Ap g,
in the notation of Borel and Serre [3]. The geodesic actions of Ag on e(P) and é(P) commute
with pp, so Xp(Q) is a principal Ry P (R)-bundle over X; , (Q?), and the projection To: Xp(Q) —
X ip (Q?) extends pp. These fibrations T« are compatible with the order in the lattice P(P) in
the sense that for each pair Q1 € Q» < P the restriction of 7o, to e(Q2) is the projection of a
principal R, P(R)-fibration with base e(Qg ). So the principal fibrations T4 are also compatible
with the inclusions X(Q?) — X(Q1) and match up to give a principal fibration structure for
e(P) over é(P). V

3.2.3. Proposition (Zucker [30]). There is a diffeomorphism
F:R,P(R) xé(P) — e(P)

given by L
F(u,zKpAp) = u - Tx(2)KpxApx € e(P) = P(R)/Kp xAp x.

Here, zKpAp € é(P) = Lp(R)/KpAp. The map F depends on the choice of the basepoint x which
determines the lift Tx.

Lemma (7.8) of [17] gives a formula for the action of P(R) on e(P) in terms of the coordinates
that F provides. Notice that g - Txup(g~1) € ker(up) = R,P(R) for any g € P(R), so

g-u-Txpp(g") = gug" - gtxepr(g~") € RuP(R)
forallg € P(R), u € R,P(R).
3.2.4. Lemma. The action of P(R) on R, P(R) x é(P) is given by

g (u,zKpAp) = (g - u - Txup(g~"), up(g) - zZKpAp).

This formula shows that R, P(R) acts only on the first factor by translation. It also follows
that there are other equivariant enlargements where the strata are reductive Borel-Serre strata.
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3.2.5. Definition. The reductive Borel-Serre enlargement Yﬁ (k = Q or R) of X is the topological
space obtained from the corresponding Borel-Serre enlargement Xy by collapsing each nilpo-
tent fiber of the projection up: e(P) — é(P) to a point. These projections combine to give a
quotient map u: X — X¢. The quotient X*/T is called the reductive Borel-Serre compactifica-
tion.

3.3. Comparison with Satake Compactifications. Workers in different fields mean different
objects when they speak of Satake compactifications. The earlier constructions [27] are com-
pactifications of a globally symmetric space which were later compared to Martin and Fursten-
berg compactifications and have applications in analysis; the later ones [28] are compactifica-
tions of (locally symmetric) arithmetic quotients of symmetric spaces which are the quotients
of certain rational portions of the first construction with a properly redefined topology. We are
interested in the first construction and the techniques used to study the second. The references
for this material are [17, 27, 28, 31].

Let G be as in §3.1 and 7: G(R) — SL(V) be a finite-dimensional representation with finite
kernel. For an admissible inner product on V, let v* denote the adjoint of v. The admissibility
of the inner product means that T(g)T(0x(g))™ = I. So the mapping To(g) := T(g)T(g)*
descends to X. Each 1¢(g) is a self-adjoint endomorphism of V. Factoring out the action of
the scalars, we get T9: X — PS(V) which is an equivariant embedding. Taking the closure of
the image, one gets the Satake compactification X3. The G-action on X extends to X3 and the
boundary X3 — X decomposes into orbits of certain subgroups of G called boundary compo-
nents. The subgroups are the parabolic subgroups which are T-connected in the appropriate
sense. They also correspond to T-connected subsets of A for some T < A as in Definition 2.2.3.
We will use interchangeable notation X3 and X3. The spaces X3 are certainly compact and
Hausdorff as the closures of bounded subspaces in PS(V).

3.3.1. Example (Minimal Satake Compactifications). These correspond to subsets T consisting
of a single root. The boundary components of minimal Satake enlargements ka’ are in bijective
correspondence with the maximal parabolic k-subgroups.

3.3.2. Example (Maximal Satake Compactification). This is the compactification corresponding
to T = A. There is always a continuous projection from X 2 onto any other Satake compactifi-
cation X3 for @ c A.

Interpreting Zucker [31], Satake compactifications can be viewed as targets of surjective maps
from the Borel-Serre enlargements. He describes them as quotients of the rational reductive
Borel-Serre enlargement as follows. For ® € A and P = 9Py € Px(G), let Q = 9Py (@). Then
there is a projection

pr.p: é(P) =é(Pg) — é(Q).
The stratum é(Q) as a space of type S for i.Q. It is the product of the symmetric space for
i‘"Qed([R)O and the real points of a factor of its center, the orbit of an anisotropic torus. The
corresponding Satake boundary component s(Q) is the non-Euclidean factor of é(Q). Let

aq: é(Q) — s(Q)
be the coordinate projection. Now
X3 = U s,
QePr
where P is the set of all T-connected Q-parabolic subgroups, and in general the union is not
disjoint. Under the
Assumption: rankg(G) = rankg (G)

which we make from now on unless state otherwise, the set A plays the role of simple Q- and R-
roots, and the torus action above is trivial, so qq is an equivalence. If T = A, the map p,p is an



8 BORIS GOLDFARB

equivalence, and we may identify the reductive Borel-Serre enlargement YZ with the maximal
Satake enlargement ; X3, cf. [30, §4.2].

3.3.3. Theorem (Zucker [31]). The composition ®p = qq ° pr,p is the restriction of a map
Pr: Yﬁ - kX%. This map factors through other ®g: Yﬁ - ng) for ® o T. Composing ®t
with u from Definition 3.2.5 gives ®1: Xy — kX%. In particular, there is a continuous map
d = (IJA: XR d [R{Xi-

Proof. This theoremﬁis essentially contained in [31, §§2-3]. Zucker is more interested in the
restriction of ®7 to X but his §2 is very general and §3 works over R under our assumption. V

4. COMPACTIFICATION OF Xq

4.1. Malcev Spaces and their Compactification. We start by constructing special compactifi-
cations of connected simply-connected nilpotent groups.

Let I be a torsion-free finitely generated nilpotent group. According to Malcev [26], it can
be embedded as a uniform lattice in a connected simply-connected nilpotent Lie group N. By
[26, Lemma 4] the subgroup I' has generators {yi,..., y»}, where v = dim N, with the three
properties:

(1) each y € T can be writtenas y = y{"' - - - yy",
(2) each subsetI; = {y?i - yﬁ”} is a normal subgroup of I', and
(3) the quotients I;/T;, are infinite cyclic forall 1 <i < 7.
Let C; = c¢i(t) be the one-parameter subgroup of N with ¢;(1) = y;, 1 < i < r. It is easily
seen that N satisfies analogues of the three properties of I":
(1) N=Cy---Cy, and the representationof g € Nas g = g1 - - - gr, gi € Cj, is unique,
(2) if Nyy1 ={e},Ni=C;---Cy,1 <i < v, thenN; areLie subgroups of N, dimN; = »—i+1,
and N; < Nforl<i<r,
3) Ci=z=Rforalll <i<r.

If n is the Lie algebra of N then e; = logyy, ..., e, = log y; becomes a basis in n so that each

set

ni = {ae; + Xir1€i41 + - -+ ey} SN
is an ideal. So {y;} produce special canonical Malcev coordinates of the first kind. The corre-
spondences

log: g — logg,
r r E
o: Z oKl — Z ax(0,...,1,...,0)
k=1 k=1

define diffeomorphisms between N, n and R" and induce flat metrics in N and n from the
standard Euclidean metric in R”.

Let M; = N/N; = Cy - --Cij_1. Since n; is an ideal in n, for any a € N the Poisson bracket
[a,e;]isin N;, ;. Denote the coordinates of p, g € N by &;, n; respectively, then the coordinates
Ci(t) of p - g satisty

() Ci=&+ni+qi,....,&-1,N1,...,Ni-1),
where g; are polynomials determined by the Campbell-Hausdorff formula. This shows that if
peNjthen& =---=&; 1 =0and {y, k < j, are independent of &;,...,&,. We can conclude

that p - g lies in the hyperplane (C,...,Cj 1, *,..., *) parallel to N;. So N acts from the right
on the set of hyperplanes parallel to N;. Similar arguments apply to the left multiplication
action.

Consider the enlargement of N, as a set, by the ends of rays in M, parallel to C; for each
j=1,...,v — 1. In order to visualize and parametrize the resulting enlargement, it is helpful
to embed N as (—1,1)" < R" in the most obvious fashion so that the order of the coordinates
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in R” coincides with the order of the index of C; = N, and the parallelism relation is preserved.
We want to define a sequence of certain topological collapses. The collapses are performed in
the boundary of the cube I and its successive quotients. The first collapse contracts

{(X1,...,Xr-1,%) €I":31 <i<r-1with x; = =1} — point.
We give this point the projective coordinates (xi,...,Xx;-1, b). The set
{(x1,...,xXy-1,b) A1l <i<rv —1withx; = 1}

is the boundary of I ~1. Now we induct on the dimension of the cube. For example, the collapse
at the m-th stage can be described a

(X1, ey Xy Ky by, by €IT™MHL 31 <{ < — m with x; = +1}
B (X15"'1x7’*mf1’ b)"'! b)

The process effectively stops after » — 1 steps when the points (+1,b,...,b) do not get iden-
tified. The result is a topological ball B" with the CW-structure consisting of two cells of each
dimension 0,1, ..., — 1 and one r-dimensional cell and a continuous composition of collapses
p: I" — B". Each lower dimensional cell is the quotient of the appropriate face in oI": if the
face F was defined by x; = =1 then dim p (F) = i.

4.1.1. Definition. Let N* be the enlargement of N by endpoints of rays in M;,; parallel to C;
forall 1 < j <7 — 1. The topology in N* is induced via the identification with the quotient of
the Euclidean cube I". The identification also defines a cellular structure on N*.

4.1.2. Proposition. The enlargement N* is a compactification which is both left and right equi-
variant with respect to the left and right multiplication actions of N on itself. The orbits of the
two actions in 0N = N* — N coincide with the cells in the cellular decomposition of the boundary
Sphere.

Proof. The fact that N* is a compactification of N follows from the evident properties of the
quotient of the cube I". Since the formulas () are polynomial, the right multiplication action
has a continuous extension to dN. Similar formulas for the left action are also polynomial.
The cells are invariant because the actions preserve the parallelism relation among the relevant
rays. V

4.2. Construction 1. Retopologizing the target of the continuous map ®: Xg — rX 2 of Zucker,
we get a continuous map ®: Xg — Xz onto the maximal Satake compactification of X. The
fibers of this map are still the nilpotent radicals of the corresponding R-parabolic subgroups.
We know from Lemma 3.2.4 that the unipotent radicals act in the fibers by translation. The
first step is to compactify each fiber equivariantly.

If Py < P, are arbitrary standard R-parabolic subgroups, then R;,P; 2 RyP>. Let By be the
standard Borel subgroup. There is a choice of Malcev coordinates in By which restricts to Malcev
coordinates in all R, Pg, ® < A. In particular, we have a fixed ordering of all chosen coordinates
in Ry Pg. For arbitrary y € Xi, if y € s(9Pg) then ®~1(y) < e(YPg), so d~1(y) = R,Py. We
apply the construction from section 4.1 to each ®~1(y), y € X5 — X, denote the result by
®-1(y)*, and put

sx= J oo t(y.
yexs\X

4.2.1. Definition. Put X* = Xp U 6X.

There is the obvious set projection g: X* — Xz extending ® from Theorem 3.3.3 collapsing
a1 (y)* — y. The topology in X* will be introduced using the following fact.

4.2.2. Proposition (Bourbaki [4]). Let X be a set. If to each x € X there corresponds a set N (x)
of subsets of X such that
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(1) every subset of X containing one from N (x) itself belongs to N (x),

(2) a finite intersection of sets from N (x) belongs to N (x),

(3) the element x belongs to every set in N (x),

(4) forany N € N (x) thereis W € N (x) such that N € N (y) forevery y € W,

then there is a unique topology on X such that, for each x € X, N (x) is the set of neighborhoods
of x, that is, subsets which contain an open superset of x.

The space Xy has the topology in which each corner X (P) is open. For y € Xrlet N(y) =
{O < X* : O contains an open neighborhood of y in Xg}.

4.2.3. Notation. Set-theoretically, each e(P), P € Pg, is enlarged to s(P) X RyPepp)(R)*. We
denote this set with the product topology by €(P). Given an open subset U < £(P), let O(U) =
q;l (V), the total space of the restriction to V = U ne(P) of the trivial bundle gp over e(P) with
fiber Ag. Then define C(U) = {z € Xg :thereis © € N (z) suchthat ONnX € OU)}u{z € 6X :
there is an open U’ c &(P) with ®(z) € s(P) such that z € U’ and O(U’) € O(U)}.

Now for y € 6X, let N (y) = {® < X* : there is an open set U < &(P) with ®(y) = s(P)
containing y with C(U) < O}. This defines a system of neighborhoods N (y) for any y € X*.

4.2 4. Definition. For a subset S € X let N (S) = {O € X* : O € N (y) for every vy € S} and
call S primary open if S € N (S).

4.2.5. Proposition. If P € Pr, and U,U;,U> < €(P) are open subsets, then
(1) C(U) is open in X*,
(2) C(Uy) nC(U2) = C(U1 N U).

Proof. These properties follow formally from the definition. Vv
4.2.6. Theorem. The primary open subsets of X* form a well-defined topology.

Proof. We need to check that the four characteristic properties from Proposition 4.2.2 are satis-
fied by the system of neighborhoods N (x), x € X*. Parts (1) and (3) are clear from definitions.
Part (2) follows from Proposition 4.2.5(2). Given any N € N (x), x € s(P) X 0Ry,P(R), there is
U < &(P) such that C(U) < N. Take W = C(U). By Proposition 4.2.5(1), N € N (y) for any
v € W. Thus (4) is also satisfied. V

4.2.7. Definition. The set X* with the primary topology will be denoted by X{". It is easy to see
that the primary topology on X is not Hausdorff.

The secondary topology on X* is the g-pull-back of the topology on Xz. Let X be the
resulting topological space. Again, X5 is non-Hausdorff.

Let X* be the space topologized by the product of the primary and secondary topologies.

4.2.8. Example. Consider the algebraic group G = SL» and an arbitrary proper parabolic R-
subgroup P of G. It acts on X fixing a point p (P) in OE, that is, P permutes geodesics abutting
to p(P). The corners X(P) are constructed by attaching a line at p(P) parametrizing these
geodesics. If P fixes a rational point then X(P) < X. Complete each stratum to e(P)* =
e(P) U {—o0, +o}. The resulting set is X*. Every X (P) is declared to be open, so typical open
neighborhoods of z € e(P) in X* are the open neighborhoods of z in X(P). Given a line e(P)
and one of its endpoints 7y, a typical primary neighborhood of y consists of
e v itself and a ray in e(P) converging to y,
e the set U in [ swept out by the hyperbolic geodesics abutting to p (P) representing the
points of the ray in e(P),
e points in all strata e(B)*, B € Pg, such that the hyperbolic geodesic connecting p (B) to
p (P) is properly inside U,
e the ray in e(R), where p(R) is the opposite end of the geodesic representing the vertex
of the ray in e(P), represented by geodesics contained in U and its limit point in the
boundary de(R).
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In this example, as in any case with rank G = 1, taking product with the secondary topology
does not affect the primary topology on X*, cf. [15]. With this topology, the subspace X <
X* has the hyperbolic metric topology, and X* — X is simply S! x I with an analogue of the
lexicographic order topology. In terms of the usual description of the lexicographic ordering
on the unit square I x I, the analogue we refer to is the quotient topology on S! x I associated
to the obvious identification (0, y) ~ (1, y) for all y € I. In particular, the boundary X* — X is
compact but not separable and, therefore, not metrizable.

4.3. Construction 2. The construction in section 4.2 compactifies all strata e(P) simultane-
ously. Often itis more convenient to use an inductive description of the same primary topology
X{* as above. The induction is over the rank of the spaces of type S associated to R-parabolic
subgroups of G, or, in other terms, over the cardinality in the lattice of subsets ® of simple
roots A starting with ® = A and finishing with © = &.

So we start by I'z-equivariantly compactifying each e(B), B € Bgr. Again, by Remark 3.1.5 and
Lemma 3.2.4, e(B) ~ Ng = RyB(R), and the action is precisely the left multiplication action
of I'z as a subgroup of Ng. Each e(B) can be compactified as in section 4.1. In order to make
these compactifications compatible, we make our choice of Malcev coordinates in e(Bg) for the
standard Borel subgroup By as in section 4.2 and take the resulting compactification e(Bg)*.
For any standard parabolic Pg, the conjugation action of Pg(R) permutes the Borel strata e(9B)
adjacent to e(Pg). Define the space

Y(A,0) ¥ Po(R) x e(By)*.
Bo(R)

Inductively, given a standard parabolic subgroup Pg, ® < A, and compactifications e (Pr)* for
T 2 0, define
Y(T,0) €' Po(R) x e(Pr)* and Y(©) % | Y(T,0).
Pr(R) T<®
Warning. The space Y(0) comes with the identification topology which we are going to use in
the ensuing construction, but it will not be the subspace topology induced from the resulting
topology on X*.

4.3.1. Definition. Define the set e(Pg)* = £(Pg) L Y(O).

The space e(Pg)r has the topology in which each corner X (P7) is open for all T 2 0. The
enlargement £(Pg) has the product topology as in §4.2. For y € e(Pg)r U €(Pg) let N (y) =
{O < e(Pg)* : O contains an open neighborhood of y in e(Pg)g U (Pg)}. Given an open subset
UcY(T) forT20,let O(U) = q(j),lT(V), the total space of the restriction to V = U n e(Pr) of
the trivial bundle ge,1 over e(Pr) with fiber Ag r. If U is any open subset of Y(®), let

ow) = |J oUnYP))
P'ePr

where Y(P') = 9Y(T) for P’ = 9Py < Pg. Then define C(U) = {z € e(Pg)r U €(Pg) : there is
O € N(z) such that O ne(Pg) < O(U)} U {z € Y(Pg)\e(Pg)R : there is an open U’ < Y(Pg)
suchthatz € U and O(U’) € O(U)}.

Now for v € Y(Pg)\e(Po)g, let N(y) = {O < e(Pg)* : there is an open set U < Y(O)
containing y with C(U) < O}. This defines a system of neighborhoods N (y) for any y €
e(Pg)*. Again, the primary open subsets form a well-defined topology on e(Pg)*; for ©® = &
one gets the primary topology on X*. It is easy to see that this is the same topology as in X;*
using the compatibility of geodesic actions in the Borel-Serre strata as in Proposition 3.2.2. So
using this description in conjunction with the secondary topology X5 as in §4.2 gives the same
space X*,

4.3.2. Remark. One can also use any of the minimal Satake compactifications and the map
dr: Xp — RX% to induce the secondary topology. This eventually gives the same topology on
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X* if used in the inductive construction of this section, where during the inductive step all of
the lower rank strata are assumed to already have the expected topology.

4.4. Construction 3. Recall from §2.1 that every irreducible symmetric space of noncompact
type X associated to some semisimple group G can be isometrically embedded as a totally
geodesic submanifold of X(SL;,) for n = dim(G). The algebraic group SL;, has split rank. The
closure of this embedding in X (SL,)* is a compactification of X. This description is harder
to handle than the explicit constructions above. Note, however, that there are no additional
assumptions about G such as split rank.

5. TOPOLOGICAL AND OTHER PROPERTIES

5.1. Hausdorff Property. For x1, x» € X*,if q(x1) = q(x2) € X° then either x1, x» € g 1(y)
for some y € X5—Xorxj; =x» € X. Noweachg ! () is Hausdorff, so the points are separated
in the primary topology. If g(x1) # q(x») € X5 then the points are separated in the secondary
topology since X° is Hausdorff.

5.2. Compactness. It can be shown that X} is compact. Unfortunately compactness of X" and
X5 alone does not imply compactness of X*. This follows from

5.2.1. Lemma. For each y Xg and any open neighborhood U of q~'(y) in X* there exists an
open neighborhood V of vy such that g~ (y) c U.

Proof. The topology in X 2 can be described by making a sequence convergent if and only if it
converges to a maximal flat and its projection onto the flat converges in Taylor’s polyhedral
compactification [20, 29].

The claim is a tautology for y € X. The question is easily reduced by induction on the rank
or dimension to the case of v = s(B) for some B € Br(G). Here g~ 1(y) = RyB(R) = e(B).
Given a neighborhood U 2 e(B)*, choose an open neighborhood N of de(B) = e(B)*\e(B)
in e(B)* and a section o of gg so that U 2 C(N) u W(o) 2 e(B)*. The geodesic influx set
W (o) is an open neighborhood of e(B) in Xg and W5(o) = gW (o) is an open neighborhood
of y in [RXZ. Consider the subset R = qgl(CN) N CWS(o) of Xi and its closure cl(R) in
Xi. Notice that v ¢ cl(R) because y is a vertex in the polyhedral compactifications of the
flats asymptotic to v which are precisely the fibers of g, and the corresponding corners are
contained in W (o). Clearly, g '(clR) 2 cl(qg!(CN) n CW(o)) = C(C(N) u W(o)). Now
a Y (CdR) =Cq ' (cIR) € C(N) uW (o) < U. So we can take V = C cl(R). V

5.2.2. Corollary. The space X* is a compactification of both the symmetric space X and the
rational Borel-Serre enlargement X.

Proof. Let ‘U be an arbitrary open covering of X. Since q~! () is compact for each y € X5, let
Uy1,--.,Uyn, be afinite collection of elements of U with

Ny
aty) Uy,
i=1

By Lemma 5.2.1 there is V), such that
ny
qil(vy) < U Uy,i-
i=1

By compactness of X° there is a finite collection of points y1,..., yx with X5 = VyUs - UVy,.
Then
My, Ny
X=UUyiv---ulJUy..
i=1 i=1
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5.3. Cech-acyclicity. We will need to use homologigal triviality of our compactifications in §6.
The homology theory involved here is a version of Cech homology.

5.3.1. Definition (Carlsson-Pedersen [8]). A finite rigid covering of a topological space Z is a
set function B from Z to open subsets of Z which takes only finitely many values and satisfies
(1) x € Bx forall x € Z and (2) cl(B~1U) < U for all U € im(B). Set the nerve N(f) to be the
simplicial nerve of the infinite covering {(x) : x € Z}. The modified Cech homology of Z with
coefficients in a spectrum S is the simplicial spectrum

h(Z;S) = holim (N_ A S),
Covz
where Cov Z is the partially ordered category of finite rigid open coverings. This is a generalized
Steenrod homology theory.

We will see that all Satake compactifications of X are acyclic. Since the continuous map
q: X* - XZ has contractible point inverses, it would be desirable to have an analogue of the
Vietoris-Begle theorem for the modified Cech theory. We proved a weak Vietoris-Begle theorem
in [15, Theorem 7.4.1]. Recall that the Chogoshvili homology theory is the unique extension
of the Steenrod-Sitnikov homology to compact Hausdorff spaces from the category of metric
compacta satisfying certain axioms of Berikashvili. The fibers need only be Chogoshvili-acyclic
for the result of Inassaridze used in that proof, so we have

5.3.2. Theorem. If f: X - Y is a surjective continuous map, whereY and f~1(y) are Chogoshvili-
acyclic for each y € Y, then f h(X;KR) — h(Y;KR) is a weak homotopy equivalence. So both
X and Y are Cech-acyclic.

5.3.3. Theorem. Each space X(§) is Chogoshvili-acyclic.

Proof. The metric space X% needs to be Steenrod-acyclic. We use Hy (_) to denote the Steenrod-
Sitnikov homology and apply the following version of the Vietoris-Begle theorem.

5.3.4. Theorem (Nguen Le Ahn [25]). Let f: X — Y be a continuous surjective map of metrizable
compacta so that Hi(f~1(y);G) = 0 forall y € Y, i < n. Then the induced homomorphism
Hy(f): Hy(X;G) — Hy(Y;G) is an isomorphism for 0 < q < n and an epimorphism for q =
n+ 1.

According to [20], the maximal Satake compactification Xg is homeomorphic to the Martin
compactification XM(Ag) of X at the bottom of the positive spectrum Ag. There is also the
Karpelevi¢ compactification XX which is defined inductively in [23] and maps equivariantly onto
XM(Ap). Theorem 5.3.4 applies to this map f: XX — XM(Ay) because the fibers of f are easily
seen to be genuinely contractible using the result of Kushner [24] that XX is homeomorphic to
a ball. The same result applied to XX itself shows that all of the spaces in

@
D" = xK L xMpg) = x3 2 x$
are Steenrod- or Chogoshvili-acyclic. ¥V
5.3.5. Corollary. Compactifications X* are Cech-acyclic.
Note however that X* is unlikely to be contractible.

5.4. Equivariance. If I is an arithmetic subgroup of G(Q), it is immediate from the construc-
tion that this compactification is I'-equivariant. In fact, the action (i G(R) on X extends to X*
which is in contrast to the fact that this action does not extend to X.

5.4.1. Remark. The space X* is certainly not a topological ball. This disproves a version of
the conjecture of Lizhen Ji [22], p. 82, that an equivariant compactification of X such that the
closure of each flat is a topological ball should be homeomorphic to the closed unit ball in the
tangent space Ty X. The closures of all maximal flats in X* are in fact contained in Xg and are
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topological balls. The construction of X* demonstrates that continuity of the extended action
must be a necessary condition in the statement.

5.5. Boundaries of Arithmetic Groups. The notion of a boundary for a discrete group has
roots in the theory of Fuchsian groups. Classically, the boundary circle is used to classify and
study isometries of the hyperbolic disk. One attempt to incorporate existing generalizations
in a formal definition for a discrete group I' is due to M. Bestvina.

5.5.1. Definition (Bestvina [2]). A boundary of T is a topological space Y such that there is a
space Z with the following properties:

(1) Z is compact, metrizable, finite-dimensional, contractible and locally contractible con-
taining Y as a Z-set,

(2) Z —Y has a free properly discontinuous action of I' with compact quotient,

(3) for every open cover ‘U of Z and every compact subset K < Z — Y all but finitely many
translates of K are ‘U-small.

In the literature on Novikov conjecture, such a compactification Z of EI' = Z — Y is called good,;
property (3) is usually expressed by saying that the action of I' on Z — Y is small at infinity.

This definition is motivated by useful geometric boundaries for torsion-free Gromov hyper-
bolic groups and CAT(0) groups. The latter class includes all uniform lattices in a semisimple
Lie group in which case Y is the ideal boundary of the associated symmetric space X.

The construction of X* provides a useful generalization of the notion of boundary, namely
Y = X* — X, in this case of an arithmetic group I'. The space X* contains X as an open dense
I'-subset, in particular I acts continuously on X as before.

5.5.2. Definition. The metric that we use in X is a transported I'-invariant metric. It can be
obtained by first introducing a bounded metric in the compact space X/I', then taking the
metric in X to be the induced path metric where the measured path-lengths are the lengths of
the images in X /T under the covering projection.

With this metric, the diameter of a fundamental domain  is bounded by some number D as
is also the diameter of any I'-translate of the domain. Beware that this metric is very different
from the one Borel and Serre used in section 8.3 in [3]. The general metrization theorems of
Palais they used produce metrics which are bounded at infinity.

The important property of this metric is that by choosing a base point xg in Q and taking its
orbit under the I'-action we can embed the group I' with a word metric quasi-isometrically in
X. Now X and I' have the same large scale geometry, therefore the boundary Y must contain
the same asymptotic information about both spaces, and we can think of Y as a boundary of
I'. The accumulation points of I' € X* is the analogue of the limit set of a Fuchsian group; it is
a closed subset of Y. In Example 4.2.8, this boundary is a subset of the the top and the bottom
circles of the cylinder X* — X with the lexicographic topology.

The space Y does not satisfy many of the properties from Definition 5.5.1. From sections
5.1—5.3, we know it does satisfy a weakening of property (1) and the crucial property (2). We
also find it natural to insist that the boundary be I'-equivariant, and our Y satifies this additional
property together with all of Bestvina’s examples. On the other hand, this assignment of the
boundary Y to I is not canonical and depends on the chosen continuous model X of I'. One
should not expect even the weak naturality properties established in [2] for the boundaries of
Definition 5.5.1. It seems that naturality is restricted to hereditary properties such as the fact
that for an algebraic subgroup H of G, Y (H) embeds in Y (G).

Property (3) is the next most desirable feature. The way it comes up in Bestvina’s context
is always via geodesic combings on the groups and the spaces Z — Y which are essential for
the constructions of the corresponding boundaries Y. According to [11], nonuniform arith-
metic lattices are not combable. This suggests that failure of property (3) should be generally
unavoidable for arithmetic groups.



LARGE SCALE TOPOLOGY OF ARITHMETIC GROUPS 15

In order to make the boundary Y useful in proving the Novikov conjecture for I', one needs
to look for certain equivalence classes of boundary points and relativize the notion of size for
the translates of compact subsets K.

5.5.3. Definition. For any subset K of a metric space (X, d) let K[D] denote the set {x € X :
d(x,K) < D}. If (X,d) is embedded in a topological space X* as an open dense subset, a set
A <Y = X* — X is boundedly saturated if for every closed subset C of X with CnY < A, the
closure of each D-neighborhood of C\Y for D > 0 satisfies (C\Y)[D]NnY < A.

It is easy to see that in sufficiently nice spaces, including all spaces in this paper, the col-
lection of boundedly saturated subsets of Y is closed with respect to taking complements,
intersections and unions. In other words, it is a Boolean algebra of sets BA. It is clearly inde-
pendent of the choice of bounded metric in X/TI. Since all arithmetic subgroups of the given G
are commensurable, this gives an invariant of arithmetic subgroups of G.

Our next goal is to generate a convenient subalgebra of BA.

5.5.4. Definition (Cubical Cellular Decompositions). Let I = [-1,1]" be the v-dimensional
cube embedded in R*. It has 2" vertices indexed by various 7-tuples with entries either 1 or
—1. Let us denote this set by V(_1). We also say that V(_;) is derived from I(_;) = {1} and
write this as V(_1) = I{_;,. Now define the following subsets of I

I(O) ={-1,0,1}, I(l) = {—1,_1’0’1’1},

27772
where v L+l
+ . .
I(i):{—l,...,g,T,...,l}, kEZ, —ZISkSZI,
for i € N. We also get the corresponding derived subsets of I":
Vi, Vay, ---» Vi) = 1vi(S1,...,8)} = IZ;),
where
def (S s ; ;
Vi(S1,. ., 5r) = (2—11,,211), sjezZ, -2t <s;<?2

At each stage V(;) is the set of vertices of the obvious cellular decomposition of I", where the
top dimensional cells are r-dimensional cubes with the j-th coordinate projection being an

interval
[kj kﬁl] 1 l<i<i
piv i | =0 TEJ=E
These cells can be indexed by the n-tuples {(k1,...,k;j,..., ky) : -2t < ki < 21}, the coordinates
of the lexicographically smallest vertex, 2+ of the »-tuples at all.

These decompositions behave well with respect to the sequence of collapses from §4.1 and
induce cellular decompositions of the result from the (—1)-st derived decomposition of I" and
the corresponding CW-structure in B". We will refer to this isomorphism of CW-structures as
Y: 0B” — TN.

There are cubical analogues of links and stars of the usual simplicial notions. Thus the star
of a vertex is the union of all cells which contain the vertex in the boundary. The open star is
the interior of the star. For the i-th derived cubical decomposition, the open star of the vertex

vi(s1,...,5) will be denoted by Star®(v;(s1,...,5r)). These sets form the open star covering
of I".
By vertices in N we mean the image Yp (V) N oI"). Let v € Yp(V(y) N 0I") then
Star®((Yp) L (v) N Vi) = U Star®(vy,)

Vn€Vm),Yp(vn)=v

is an open neighborhood (the open star) of (Yp)~!(v), and, in fact,

Star® (v) ' Yp (Star® (p 1YL (v) N Vi)
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is an open neighborhood of v which we call the open star of v. The map Yp is bijective in the
interior of I", so Star) (v) can be defined by the same formula for v € Yp (V(;,) N intI").

In order to determine the geometry of open sets in X and ultimately saturated sets in Y, we
need to study the geometric question: describe the family of flats asymptotic to the given two
chambers or walls at infinity of a symmetric space X. One answer is well-known in terms of
horocycles.

5.5.5. Theorem (Im Hof [21]). If v, z € 0X are contained in Weyl chambers W(y), W(z) < 0X,
let N,,, N be the nilpotent components in the corresponding Iwasawa decompositions. For an
arbitrary point x € X the intersection of the horocycles N, - x N N; - x parametrizes the set of
all flats asymptotic to both W (y) and W (z).

The minimal strata e(B) for B € Br parametrize the flats which are asymptotic to W (B).

5.5.6. Definition. Define the subsets A(B,B’) < e(B) to be the geodesic projections qg(Np -
x N Np' - x) in the sense that they consist of a € e(B) such that the flat qgl (a) is asymptotic
to W(B').

This parametrization is more convenient for us because each & € e(B) is precisely the point
of intersection e(B) N qgl(E) = {&}. Now given an open subset U < e(B), the corresponding
open set C(U) < X can be described as ((cl qgl (CU)), and qgl (CU) can be identified easily by
examining the closure of each flat gz' (%), € ¢ U.

5.5.7. Proposition. Given B, B’ € By, the flats which are asymptotic to both W (B) and W (B")
are parametrized by

A(B,B’) % A(B',B).
If S < A(B,B’) then o(S) < A(B’,B) is contained in the closure cl(qg'(S)).
5.5.8. Corollary. If B, B’ € Bgr and U < €(B) is an open subset then vy € &(B’) is contained in
C(U) if and only if either

(1) v € e(B") and its orthogonal projection g onto A (B’, B) is not contained in the subset
Ag(U) corresponding bijectively to U n A(B,B’), or
(2) y € 0e(B’) and y ¢ cl(mglAg(U)).

The intersections of C(U) with €(P), P € Pr\Br, are open product subsets.
From this description easily follows

5.5.9. Proposition (Weak Summability). Given arbitrary open subsets U, and U> < £(B), it may
not be true that
C(UpuUp) =C(Up) UC(Up).

However, the open stars in any derived decomposition of €(B) from Definition 5.5.4 do have this
property.
5.5.10. Corollary. Given a finite collection of open subsets Qi,...,Qn < X with €(B) < U Q;
there is another finite collection of open subsets Uy, ...,Uy S €(B) so that

e B U Uj,

e Vi<j<m3idl<i=<n with C(Uj) € Q;,

« C(UUj) =UC(W;).

5.5.11. Theorem. The following subsets of Y are boundedly saturated.:

e each §(P) = s(P) X RyP(R)* for P € Pr\Pq,
e each product cell in e(P) n'Y forall P € Pg.

This defines a partition E of Y into disjoint boundedly saturated subsets.
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Proof. The proof is entirely similar to that in section 8 of [15]. One uses Proposition 5.5.7 and
Corollary 5.5.8 to create ‘barriers’ consisting of translates of fundamental domains that isolate
the boundedly saturated subsets of the boundary. As explained in those proofs, one may use
general Siegel fundamental sets in place of the geometrically explicit fundamental domains of
Garland-Raghunathan for rank one lattices or Grenier for lattices in SL3. V

5.5.12. Definition. The boundedly saturated sets identified in Proposition 5.5.11 generate a
Boolean subalgebra of sets BA.

6. PROOF OF THEOREM 1

The general plan of the proof is common with [7, 8, 15, 16]

6.1. Outline. Given a discrete group I whose classifying space BI is a finite complex, we assume
there is a compactification Z of the universal cover ET such that the free action of I' on ET
extends to Z, and Z is acyclic with respect to the modified Cech homology as in Definition
5.3.1, with coefficients in K(R). The idea is to interpret «(I') as a I'-fixed point map of two
I'-spectra in the following commutative diagram.

BT, AK(R) =X K(R[T])

I
RT - 7T
Here R and 7T are the K-theory spectra of certain categories of free R-modules parametrized
over ET x I. The important feature is that the resulting spectra depend only on the global
behavior of the supports of the modules. This is manifested in the equivalence R ~ h(Y;KR)
when I satisfies the assumptions above.

There are canonical maps from fixed points to homotopy fixed points and the commutative
square

)

RF Tl"

al l

hl'
R _T* g hr
where p* happens to be an equivalence in this situation.

6.1.1. Definition. Let C; and C» be two closed subsets of Y. The pair (Cy1, C2) is called excisive if
there is an open subset V c Z such that C> — C; < V and VN C; < Co. For two arbitrary subsets
Uy and Uy, the pair (Uy, Up) is excisive if every compact subset C of U; U U» is contained in
C1 U Co where (Cq, C2) is an excisive pair of closed subsets with C; < U;. A collection of subsets
U; € Y is called excisive if every pair in the Boolean algebra of sets generated by Uj; is excisive.

We make an additional assumption that the boundary Y = Z — ET contains a I'-invariant
family F of excisive boundedly saturated subsets that cover Y. This guarantees that there is a
map

0:7T — holim NA A K(R),
AeA
where A is a contractible I'-category of finite rigid coverings A of Y by the sets from F. The

composition ohl o 1'r>f}r is induced from a I'-equivariant map
0: h(Y;K(R)) = hcﬂm NU AK(R) — hg&m NA AK(R)
UeCovY AeA

which we describe next. It is a general fact that if 0 is a (nonequivariant) equivalence then 0" is
also an equivalence, and one has x(I') as the first map in a composition which is an equivalence.
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Note that very little is known about the other maps in the composition but this still makes x(I')
a split injection.

In the simplest case when F are open sets, 0 coincides with the restriction map induced
by the inclusion A < CovY. To identify € in our more general situation, we need to make a
sensible choice of boundedly saturated sets F.

The following is the summary of the required conditions on A.

(1) There is a subcategory Ord Y of CovY such that the inclusion j: OrdY - CovY in-
duces a weak homotopy equivalence;

(2) For each set U = ¢p(y) for ¢ € Ord Y there is an open set V(U) < X with the following
properties: (1) VNY =U and (2) {V(U) : U € im ¢} 9,4y form a cofinal system of finite
coverings of Y by open subsets of X;

(3) Given a covering ¢ € OrdY, there is an assignment (which we call saturation and
denote by sat) of a based boundedly saturated subset A, < Y to each set ¢(y) so that
sat induces a natural transformation

saty: N A K(R) — Nsat( ) A K(R),

and the collection A above is precisely the result of applying saturation to Ord Y. We
require the resulting collection to be excisive in the sense defined in [8]. We require that
each morphism saty is a weak equivalence of spectra by Quillen’s Theorem A applied
tosaty: N — Nsat( ).

6.2. Orderly coverings. We will construct a cofinal family of finite open coverings of Y that
satisfies conditions (1) and (2). Recall that a rigid covering B € CovY of Y consists of pairs
x € U(x) where x € Y and the values U(x) lie in a finite open covering of Y. Let ‘U be the
underlying finite open covering im S.

Fix a Borel subgroup B € Bgr. There is a number £z € N with £3 > ng and an open neighbor-
hood U > f(B) in XS with

Prelnfy, ;, (v) €y n C(Starg (v)) np~'Up < B(x)

for each v € V(y,) and some x € Y. Let I be the set consisting of all P € Pg \ Br such that
f(P)nCUp + @. Let § consist of all B" € Bg such that

A(B,P)n Star?,B(v) =@ and A(B,P)n Star?/)B(v) + .
Now we can define Vz(U) < Up such that
Up\Ve=Usn |J f(P)
B«Pel
and
def _ ’
Infy, 1, (v) = Prelnfy, 1, (v) N p~L(Vp)\ | &(B).
B'c§
The union of these sets over all v € V(y,) is an open neighborhood of £(B) in Y by the weak
summability property.
Using compactness of X, compactness of each e(P)”, P € Pg, and relative compactness of
&(P), one can choose finite subsets » < Br and ¥ < Pr\Br and numbers 0 < mp, kp € N for
P € ) satisfying
(1) VB X 3P €) such that B < P,
)Y = UBEB Inng,UB (v)u UPGJO E(P),

and the following properties: fix P € 9 and use the notation »(P) := {B € % : B < P}, then
(3) for some 0 < kp € Nand w(P) € 0é(P) n V(g

Y né(eP)) = | Infy, y,(v) np~IStary (w) n 6(é(P)),
Be®
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(4) Ok p refines the restriction of ‘U to £(P),

(5) mp = maxgenp)(¥p), kp = maxgenp)(Kp),

(6) each open star in the associated kp-th cubical derived decomposition of £(é(P)) contains
at most one point from {W(B) : B € 3(P)},

(7) for each w € 0é(P) N V(x,) there exists B € % such that

either W(B) € Starg, (w) or p‘l(Starip(w)) c U Infy, y, (V).
UGV([)B)

For a Borel subgroup B(w) define

Ordy, 1 (Vi w) €' (Infg, 1, (V)\e(P)Y) U p~Stary, (w)

and

def AN
ExcOrdy, y, kp (V;w) = Ordy, y, 1, (V; W\ | e(P)™
B<P’
Consider the category ExcOrdY of finite open coverings by the sets (Exc)Ordy, y, x, (V; W)
and Oy, i p for all choices of B, 3, 19, etc., and generate all finite rigid coverings w € CovY
which satisfy

e imw € ExcOrdY,
e w(y) = O0rdy, x(v;w) for some P € P if and only if y € £(P),
e if v € £(B) for some B € )0 then

w(y) = EXCOrng(w),k(v;w)

for some v where x (W (B)) = Star(w) for a fixed finite rigid covering x of X (M) by
open stars Stary(z), z € V),
e wW(y) €Oy if y € e(P).

The resulting coverings form a full subcategory PREORDY < CovY. This procedure may look
asymmetric as to the roles of maximal strata played in corners

X(B) =e(P") ue(P")"

when P’, P’ € 39 and y € &(B): there is a choice of w and, hence, of particular P involved
here. The asymmetry disappears after the next step when one generates the smallest full
subcategory Ord Y of CovY containing PREORDY and closed under intersections.

The category OrdY is not cofinal; however the map

J*: h(Y;KR) — holim (N_ A KR)
Ordy

induced by the inclusion j: OrdY — CovY is a weak homotopy equivalence by Quillen’s The-
orem A, cf. [15].

6.3. Definition of A. The boundedly saturated coverings we produce are outcomes of actual
saturation with respect to a Boolean algebra of boundedly saturated sets. The construction is
by induction on the rank. Saturation enlarges the sets in OrdY using the chosen coverings
op, B € %, and mrp, P € 0\%. It suffices to present the construction of boundedly saturated
coverings «(w, xg, Tp) based on generators w € PREORDY.

6.3.1. Definition. For B € Br(G) use the notation «; g for the finite rigid covering of the cell o; p
given by «; p(y) = &p(y) no;p for each y € o;p. The same formula associates «; g(y) < 0 g
to each v € de(B). For P > B of type i, define Ilgp: 6e(B) — imtp by llgp(y) = ;i p(y) X
(é(P))‘((S)2 where B’ € By and the vertices v, w are from

w(y) = EXCOI‘d,gB,(w)'UB,,kP(v;w).
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Now set

1P (1Y) if y eeP),PehnPq

w(y)\e(B) Vllgp(y) if y € &(B), BEX,

w(y) Ullgpj) () if yeojp Bé¢s,

w(y) otherwise.

The saturation of a subset S with respect to a Boolean algebra of sets is the union of elements
of BA which intersect § nontrivially. Define «(B) as the finite rigid covering of Y by the satu-
rations of sets S in o™ (B) with respect to the Boolean algebra BA from Definition 5.5.12. The
equivariant category A is the collection of all such «.

o™ (y) =

Each of the two steps in this construction preserves the homotopy type of the nerve of w
and '™, Now the natural transformation N — N&™( ) — N&(_) is composed of homotopy
equivalences. So

holim (N_ A KR) = holim (N™( ) A KR) — holim (Nx(_) A KR).
OrdyY ordy OrdyY

This procedure also defines a left cofinal saturation functor sat: OrdY — A so that the induced
map
saty: holim (Nx(_) A KR) — holim (N_ A KR)
ordyY A
is a weak equivalence. The composition of all equivalences above is the required equivalence

0: h(Y;KR) = holim (N_ A KR).
A
This completes the proof of Theorem 1.
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