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Abstract. We explore a weakening of the coherence property of discrete

groups studied by F. Waldhausen. The new notion is defined in terms of

the coarse geometry of groups and should be as useful for computing their

K-theory. We prove that a group Γ of finite asymptotic dimension is weakly

coherent. In particular, there is a large collection of R[Γ]-modules of finite ho-

mological dimension when R is a finite-dimensional regular ring. This class

contains word-hyperbolic groups, Coxeter groups and, as we show, the co-

compact discrete subgroups of connected Lie groups.

1. Introduction

Let A be a ring with a unit. A left A-module is coherent if it has a resolution

by finitely generated projective A-modules. It is regular coherent or said to

have finite homological dimension if such resolution can be chosen to be finite.

This notion is particularly useful when A is a group ring R[Γ]; alas, homolog-

ically finite dimensional modules over generic group rings are very rare. We

will describe a weaker notion of coherence and a new method for constructing

finite dimensional modules using coarse geometric properties of the group Γ .

Throughout the paper the ring R is assumed to be noetherian.

We should recall that F. Waldhausen [12] discovered a remarkable collection

of discrete groups Γ such that all finitely presented modules over the group

ring R[Γ] are regular coherent. It includes free groups, free abelian groups,

torsion-free one relator groups, their various amalgamated products and HNN

extensions and so, in particular, the fundamental groups of submanifolds of the

three-dimensional sphere. Waldhausen called this property of the group regu-

lar coherence and used it to compute the algebraic K-theory of these groups.

He also wondered if a weaker property of the group ring would suffice in his ar-

gument (see for example the paragraph after the proof of Theorem 11.2 in [12]).

When we compute the K-theory of geometrically finite groups of finite asymp-

totic dimension in [6], by proving surjectivity of the integral assembly map, we

indeed require a weaker coherence property than that of Waldhausen; however,

it is not directly related to his argument.

Using the coarse combinatorial geometry of the group, we will define a class

of finite presentations of R[Γ]-modules which we call admissible. We will also

use the geometry to introduce a large collection of finite dimensional R[Γ]-
modules which we call lean and which includes all modules with admissible

presentations.

1.1. Example. To illustrate the geometric nature of our method, we give a new

proof of coherence of the group of integers Z. In this case we consider an
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R[Z]-homomorphism of two free modules f : R[Z]m → R[Z]n and show that

the kernel of f is finitely generated when R is noetherian.

A geometric viewpoint on f is introduced by filtering each of the free mod-

ules by the R-submodules associated to the subsets [a, b] = {a,a+ 1, . . . , b −
1, b} of Z. Let R[a,b]k stand for the k-tuples of group ring elements where

all group elements in the formal sum expressions come from [a, b]. Notice

that for each homomorphism f there is a number d such that f(R[a, b]m) ⊂
R[a− d,b + d]n for all choices of a ≤ b.

Let k be an element of the kernel ker(f ) and let k be written as a sum k =∑
ki, where ki ∈ R[5di,5d(i + 1)]m, and only finitely many ki are nonzero.

Observe that because of the property of the number d and the fact that ki +∑
j 6=i kj ∈ ker(f ), we have f(ki) = si,l + si,r where

si,l = −f


∑

j<i

kj


 ∈ R[5di− d,5di+ d]n

and

si,r = −f


∑

j>i

kj


 ∈ R[5d(i+ 1)− d,5d(i+ 1)+ d]n.

In fact, si,r = −si+1,l for all i. Since R is a noetherian ring, im(f ) ∩ R[−d,d]n

is finitely generated, so there is a number e such that

im(f )∩ R[−d,d]n = f(R[−d− e,d+ e]m)∩ R[−d,d]n.

Now choose ti ∈ R[5di−d− e,5di+d+ e]
m so that f(ti) = si,r = −si+1,l and

thus all ki − ti + ti+1 are in the kernel:

f(ki − ti + ti+1) = f(ki)− f(ti)+ f(ti+1)

= (si,l + si,r )− si,l + si+1,l

= (si,l + si,r )− si,l − si,r = 0.

Since all elements ki−ti+ti+1 ∈ R[5di−d−e,5d(i+1)+d+e]m, we conclude

that the R[Z]-module ker(f ) is generated by the R-submodule ker(f )∩R[−d−
e,5d+ d+ e]m which itself is finitely generated as R is noetherian.

For a general discrete group Γ , given an R[Γ]-module F with finite generating

set Σ, it is also an R-module with the generating set B = Σ×Γ . There is a locally

finite set function s : B → Γ which maps (σ , γ) to γ. On the other hand, one

can associate to every subset S of Γ the R-submodule generated by Σ× S.

Recall that a finitely presented group Γ can be given a word metric specific

to the presentation. This makes Γ a proper metric space. It is known that all

word metrics on the group are quasi-isometric.

1.2. Definition. Consider general functors f : P(Γ)→ ModR(F) from the power

set of Γ ordered by inclusion to the R-submodules of F such that f(Γ) = F
and f(T) is a finitely generated R-module for each bounded subset T ⊂ Γ . We

will refer to F as an Γ -filtered R-module. If f is Γ -equivariant in the sense that

f(γS) = γf(S) for all γ ∈ Γ and S ⊂ Γ then F as an equivariant Γ -filtered

R-module.

A homomorphismφ : F1 → F2 between finitely generated R[Γ]-modules with

fixed choices of filtrations fi, i = 1, 2, is boundedly controlled with respect
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to the bound D > 0 if φf1(S) ⊂ f2(BD(S)) for all subsets S ⊂ Γ . Here BD(S)
stands for theD-enlargement of a subset S in a metric spaceX that is the subset

{x ∈ X | d(x, S) ≤ D}. Let I be the image of φ and let i(S) = im(φ) ∩ f2(S).
If φ in addition satisfies φF1 ∩ f2(S) ⊂ φf1(BD(S)) then it is called bound-

edly bicontrolled of filtration D. When Γ is infinite, neither of the properties is

satisfied by all R[Γ]-homomorphisms.

1.3. Example. A boundedly controlled idempotent homomorphism of an equi-

variant filtered module is always boundedly bicontrolled. Indeed, if φ : F → F
is an idempotent so that φ2 = φ then φ|I = id, so φF ∩ f(S) ⊂ φf(S).

1.4. Definition. A pair of subsets S, T of a metric space X is (coarsely) antithetic

if for each number D > 0 there is D1 > 0 so that BD(S)∩ BD(T) ⊂ BD1(S ∩ T).

Examples of such pairs include any two subsets of a simplicial tree as well

as complementary half-spaces in a Euclidean space.

1.5. Definition. A Γ -filtration f of an R-module F is lean if it satisfies the fol-

lowing two properties for some fixed number d = df > 0:

(1) for any subset S of Γ and y ∈ f(S),

y ∈
∑

γ∈S

f(Bd(γ));

(2) for any antithetic pair of subsets S and T , if y ∈ f(S) and y ∈ f(T)
then y ∈ f(Bd(S ∩ T)).

An R[Γ]-module is called lean if it has a lean equivariant Γ -filtration by R-

submodules.

Notice that a lean R[Γ]-module is finitely generated. The class of lean R[Γ]-
modules certainly contains all free finitely generated R[Γ]-modules.

1.6. Definition. An R[Γ]-module is finitely presented if it is the cokernel of

a homomorphism, called presentation, between free finitely generated R[Γ]-
modules. If the homomorphism is boundedly bicontrolled, we call the presen-

tation admissible.

1.7. Definition. The group ring R[Γ] is weakly coherent if every R[Γ]-module

with an admissible presentation has a projective resolution of finite type. We

say the ring R[Γ] is weakly regular coherent if every R[Γ]-module with an ad-

missible presentation has finite homological dimension.

Groups of finite asymptotic dimension were introduced by M. Gromov [10].

Examples from this apparently very large class are the Gromov hyperbolic

groups [10], Coxeter groups [9], various generalized products of these, includ-

ing the groups acting on trees with vertex stabilizers of finite asymptotic dimen-

sion [2], and, more generally, fundamental groups of developable complexes

of finite dimensional groups [1]. We show in section 3 that cocompact lattices

in connected Lie groups also have finite asymptotic dimension.

The following is the main result of the paper.

1.8. Theorem. Let R be a noetherian ring and Γ be a discrete group of finite

asymptotic dimension. Then

(1) lean R[Γ]-modules have projective resolutions of finite type,
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(2) all R[Γ]-modules with admissible presentations are lean.

If, in addition, R has finite homological dimension then

(3) lean R[Γ]-modules also have finite homological dimension.

1.9. Corollary. Let R be a finite dimensional noetherian ring and Γ be a discrete

group of finite asymptotic dimension. Then the group ringR[Γ] is weakly regular

coherent.

1.10. Example. To illustrate the construction of interesting lean finite-dimen-

sional modules, recall that idempotents between R[Γ]-modules are boundedly

bicontrolled. We will see that images and cokernels of boundedly bicontrolled

maps between lean modules are lean. Existence of idempotents over group

rings is well-known. Now given any idempotent between free finitely-generated

Z[Γ]-modules, reduction modulo a composite integerm gives another idempo-

tent whose image and cokernel are nonprojective modules over Z[Γ].

We will prove weak coherence properties for discrete groups of finite as-

ymptotic dimension in section 2. Section 3 shows that cocompact lattices in

connected Lie groups have finite asymptotic dimension.

2. Weak coherence and finite asymptotic dimension

2.1. Definition. A family of subsets in a general metric space X is d-disjoint if

dist(V , V ′) = inf{dist(x,x′)|x ∈ V , x′ ∈ V ′} > d for all V , V ′. The asymptotic

dimension of X is defined by M. Gromov [10] as the smallest number n such

that for any d > 0 there is a uniformly bounded cover U of X by n+1 d-disjoint

families of subsets U = U0 ∪ . . .∪Un.

It is known that asymptotic dimension is a quasi-isometry invariant and so

is an invariant of a finitely generated group viewed as a metric space with the

word metric associated to a given presentation.

The proof of Theorem 1.8 is based on the following characterization of met-

ric spaces of finite asymptotic dimension and a sequence of lemmas.

2.2. Definition. A map between metric spaces φ : (M1, d1) → (M2, d2) is an

asymptotic or uniform embedding if there are two real functions f and g with

limx→∞ f(x) = ∞ and limx→∞ g(x) = ∞ such that

f(d1(x,y)) ≤ d2(φ(x),φ(y)) ≤ g(d1(x,y))

for all pairs of points x, y in M1.

2.3. Theorem (Dranishnikov [7, 8]). A group Γ has finite asymptotic dimension

if and only if there is a uniform embedding of Γ in a finite product of locally

finite simplicial trees.

We can use the notions of lean filtered R-modules and boundedly controlled

and bicontrolled homomorphisms of such modules associated to any proper

metric space X, with or without a group action. Thus an X-filtration of an

R-module F is a functor f : P(X)→ ModR(F) from the power set of X to the R-

submodules of F such that f(X) = F and f(T) is a finitely generated R-module

for each bounded subset T ⊂ X. Now conditions (1) and (2) in Definition 1.5

define the class of lean X-filtered modules.
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2.4. Lemma. Let P be a finite product of locally finite simplicial trees, with the

product word metric. Then the kernel of a surjective boundedly bicontrolled

homomorphism between lean P -filtered R-modules is lean.

Proof. Suppose P =
∏

1≤i≤m Ti and π : P → T = Tm is the m-th coordinate

projection. Given a surjective boundedly bicontrolled homomorphism φ : F →
G between two lean P -filtered R-modules, let D ≥ 0 be a number such that

fil(φ) < D, and let f and g be lean filtrations of F and G respectively, both of

filtration D.

We will show that the kernel K = ker(φ) equipped with the restriction of the

P -filtration f is lean. Fix a vertex t0 in T . Given another vertex t ∈ T , we define

its shadow as the subset Sh(t) = {t′ ∈ T |t ∈ [t0, t
′]}. For every t ∈ ∂B6kD(t0),

0 ≤ k, let

S(t) = Sh(t)∩
(
B6(k+2)D(t0)− B6(k+1)D(t0)

)
.

Since D is a filtration of f , if k is in the kernel K then k can be written as the

sum
∑
lt , t as above, where lt ∈ f(π−1(St)). This is certainly a finite sum.

More generally, let S(t, l,u), for t ∈ T with dist(t0, t) ≤ l ≤ u, be the subset

Sh(t)∩ (Bl(t0)− Bu(t0)). Then

φ(lt) ∈ g
(
π−1S(t,6(k+ 1)D −D,6(k+ 2)D +D)

)
.

Using that φ(lt) = −φ
(∑

t′ 6=t lt′
)
,

φ


∑

t′ 6=t

lt


 ∈ g

(
π−1S(t,6(k+ 1)D +D,6(k+ 2)D −D))

)
,

and that D is a filtration of g, we see that φ(lt) = y
1
t +y

2
t with

y1
t ∈ g(π

−1S(t,6(k+ 1)D − 2D,6(k+ 1)D + 2D))

and

y2
t ∈ g(π

−1S(t,6(k+ 2)D − 2D,6(k+ 2)D + 2D)).

Notice that

diamS(t,6(k+ 1)D − 2D,6(k+ 1)D + 2D) ≤ 16D

and

diamS(t,6(k+ 2)D − 2D,6(k+ 2)D + 2D) ≤ 20D.

It is clear that the subsets St,∗ so obtained are pairwise disjoint. Since fil(φ) <
D, there are elements

z1
t ∈ f(π

−1S(t,6(k+ 1)D − 3D,6(k+ 1)D + 3D))

and

z2
t ∈ f(π

−1S(t,6(k+ 2)D − 3D,6(k+ 2)D + 3D))

with φ(zit) = y
i
t . It is easy to see that

∑
t(z

2
t − z

1
t ) = 0. Now kt = −z

1
t + lt − z

2
t

are elements in the kernel K, each contained in

Ft = f(π
−1S(t,6(k+ 1)D − 4D,6(k+ 2)D + 4D)),

so k can be written as a finite sum

(∗) k =
∑
kt .

It follows that K is generated as an R-module by the submodules Kt = K ∩ Ft
for all t as above. For each t, the diameter of the set S(t,6(k+1)D−4D,6(k+
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2)D + 4D) is bounded above by 28D which is independent of t. In particular,

this proves the statement when P = T . In this case Kt are finitely generated as

submodules of finitely generated modules over the noetherian ring R.

In general, one can use induction on the number m of tree factors in P . Let

Pi be the product
∏
j≥i Ti. Let πi−1 : Pi−1 → Pi be the obvious projection. Now

given an element k in the kernel K such that there is S ⊂ T with k ∈ f(S) and

diam(πi−1(S)) < C , we would like to see that k can be written as a sum
∑
kt so

that kt ∈ f(St) and diam(πi(St)) < B where B is a number which depends on C
andD but not on n. This is easily achieved exactly as in the construction of the

sum (∗) above with B = 2C + 15D. Applying this construction inductively, one

obtains a decomposition of the original k ∈ K as the sum
∑
kt with kt ∈ f(St)

and diam(St) < (C + 15D)2m.

Property 2 of the lean modules for ker(φ) is inherited from F . 5

2.5. Lemma. Every R[Γ]-homomorphismφ : F → G between a lean R[Γ]-module

F and an equivariant Γ -filtered moduleG is boundedly controlled as a homomor-

phism between filtered R-modules.

Proof. Let f be a lean equivariant Γ -filtration of F . Consider z ∈ f(S), then

z =
∑
rizi where zi ∈ f(Bd(xi)) for some xi ∈ S. Since φ is an R[Γ]-

homomorphism, there is a number D ≥ 0 such that φ(z) is in g(Bd+D(x))
for all z ∈ f(Bd(x)) and all x ∈ Γ . Then φ(z) =

∑
riφ(zi) ∈

∑
g(Bd+D(xi)) ⊂

g(Bd+D(S)). 5

2.6. Lemma. Every surjective boundedly controlled homomorphism of lean fil-

tered modules is boundedly bicontrolled. Therefore every surjective R[Γ]-homo-

morphism of lean R[Γ]-modules is boundedly bicontrolled.

Proof. If y ∈ g(S) then y =
∑
riyi with yi ∈ g(BdG(xi)), xi ∈ g(S). Each

g(BdG(x)) is a finitely generated R-module, so there is a constant C ≥ 0 and

zi ∈ f(BdG+C)(x) so that φ(zi) = yi. Now z =
∑
rizi is in f(BdG+C(S)). 5

2.7. Lemma. Let φ : M1 → M2 is an injective asymptotic embedding of proper

metric spaces. If S and T are coarsely antithetic in M1 then φ(S) and φ(T) are

antithetic in M2. Conversely, if U and V are antithetic in M2 then φ−1(U) and

φ−1(V) are antithetic in M1.

Proof. We will show the first statement, the proof of the second is similar.

Assume φ has the properties listed in Definition 2.2. Now for any choice of

d ≥ 0 with f(d) > D

BDφ(S)∩ BDφ(T) ⊂ φ(Bd(S))∩φ(Bd(T))

= φ(Bd(S)∩ Bd(T))

⊂ φ(Bd1(S ∩ T))

⊂ Bg(d1)φ(S ∩ T)

⊂ Bg(d1)(φ(S)∩φ(T)).

Here the equality follows from the injectivity assumption. So we can take D1 =

g(d1). 5
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2.8. Proposition. If φ : M1 → M2 is an injective asymptotic embedding between

proper metric spaces then theM2-filtration f∗(S) = f(φ
−1(S)) induced from an

M1-filtration f is lean if and only if f is lean.

Proof. We show the necessity half of the argument. Notice that the fact that

d2(φ(x),φ(y)) ≤ g(d1(x,y)) implies Bd(x) ⊂ φ
−1(Bg(d)(φ(x)) for all d ≥ 0.

Suppose f is lean, then given y ∈ f∗(S) = f(φ
−1(S)) and

y ∈
∑

x∈φ−1(S)

f(Bd(x)),

we have

y ∈
∑

x∈φ−1(S)

f(φ−1(Bg(d)(φ(x)))

=
∑

x∈φ−1(S)

f∗(Bg(d)(φ(x)))

⊂
∑

z∈S

f∗(Bg(d)(z)).

For the second property, if y ∈ f∗(S)∩ f∗(T) = f(φ
−1(S))∩ f(φ−1(T)) then

y ∈ f(Bd(φ
−1(S))∩ Bd(φ

−1(T)))

⊂ f(φ−1(Bg(d)(S))∩φ
−1(Bg(d)(T)))

= f(φ−1(Bg(d)(S)∩ Bg(d)(T))

⊂ f∗(Bd1(S ∩ T)).

for some d1. So f∗ is lean with characteristic constant d1. 5

2.9. Corollary. Let Γ be a finitely generated group viewed as a metric space with

the word metric induced by a fixed presentation. If Γ has a uniform embedding

i0 : Γ → P in a finite product P of locally finite simplicial trees then the kernel of

a surjective R[Γ]-homomorphism of lean R[Γ]-modules is lean. In particular, it

is finitely generated.

Proof. The given homomorphism φ : F1 → F2 between two lean R[Γ]-modules

can be thought of as a boundedly controlled homomorphism between lean R-

modules with the P -filtrations f0 defined by f0(S) = f(i
−1
0 (S)). From Proposi-

tion 2.8 we see that f0 is lean if and only if f is lean. When φ is surjective, it

is boundedly bicontrolled by Lemma 2.6. The rest follows from Lemma 2.4. 5

2.10. Lemma. The image of a boundedly bicontrolled homomorphism of lean

filtered modules is lean.

Proof. Let D be a filtration degree of the homomorphism φ : F → G. If I is the

image of f , it has the natural Γ -equivariant filtration given by i(S) = I ∩ g(S).
If y ∈ g(S) then there is z ∈ f(BD(S)) with φ(z) = y written as z =

∑
rizi

for some zi ∈ f(BdG(xi)) and xi ∈ BD(S). So y =
∑
riφ(zi) and φ(zi) ∈

g(BdG+D(xi)). In other words,

y ∈
∑

x∈S

i(BdG+2D(x)).

To see that the second characteristic property of lean modules is inherited by

the image fromG, we show that generally the image of a boundedly bicontrolled
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homomorphism with the kernel satisfying property 1 also satisfies property 2

in Definition 1.5. Let y ∈ g(S) ∩ g(T), then there are zS ∈ f(BD(S)) and

zT ∈ f(BD(T)) such that φ(zS) = φ(zT ) = y . Thus k = zS − zT is in the

kernel K = ker(φ). Using property 1 of the kernel K, write k = kS + kT where

kS ∈ f(Bdf+D(S)) and kT ∈ f(Bdf+D(T)) so that zS − kS = zT + kT and again

φ(zS − kS) = φ(zT + kT ) = y . Now since F has property 2 and zS − kS =
zT + kT is in f(Bdf+D(S)) ∩ f(Bdf+D(T)), it is also in f(B2df+D(S ∩ T)). So

y ∈ g(B2df+2D(S ∩ T)). 5

2.11. Corollary. The cokernel of a boundedly bicontrolled homomorphism of

lean P -filtered R-modules is lean.

Proof of Theorem 1.8. Given a lean R[Γ]-module F , let F1 be the free R[Γ]-
module on the finite generating set Σ of F . We view it as a lean R-module with

the canonical filtration induced from the product generating set Σ × Γ . Then

the surjection π : F1 → F is boundedly bicontrolled. The kernel K1 = ker(π) is

lean by Lemma 2.4. Construct a free finitely generated R[Γ]-module F2 with a

projection π1 : F2 → K1. By Lemma 2.5, π1 is boundedly controlled, hence by

Lemma 2.6 it is boundedly bicontrolled. This shows that F is finitely presented

as the quotient of the composition d1 = i1π1 which is boundedly bicontrolled.

This construction also inductively gives a resolution by free finitely generated

R[Γ]-modules.

Part 2 of Theorem 1.8 follows directly from Corollary 2.11.

For part 3, consider the n-th syzygy module Kn = ker(dn) where n is the

homological dimension of the ring R. It is known from the Syzygy Theorem

that G is a projective R-module if it fits into a resolution

0 -→ G -→ Pn -→ Pn−1 -→ . . . -→ P1 -→ F -→ 0

of an R-module F over a regular ring R of homological dimension hd(R) ≤ n
and all modules P1, …, Pn are projective, cf. Lemma 4.1.6 of [13]. This certainly

applies to Kn. Since R[Γ]-modules which are free as R-modules are also free

R[Γ]-modules, it follows easily that R[Γ]-modules projective as R-modules are

projective as R[Γ]-modules. Since Kn is lean, it is finitely generated over R[Γ].
This shows that F has a finite projective resolution of length at most n. 5

3. The asymptotic dimension of uniform lattices

This section proves that the asymptotic dimension of cocompact discrete

subgroups of a connected Lie group G is the dimension of the homogeneous

space of maximal compact subgroups in G.

3.1. Definition. A map between metric spaces φ : (M1, d1) → (M2, d2) is even-

tually continuous if there is a real function g such that d2(φ(x),φ(y)) ≤
g(d1(x,y)) for all pairs of points x, y in M1.

3.2. Proposition. If M1 = M2, the identity map id : M1 → M2 is a uniform em-

bedding if and only if the identity map is eventually continuous in both ways,

that is, there are real functions g and g such that d2(x,y) ≤ g(d1(x,y)) and

d1(x,y) ≤ g(d2(x,y)) for all pairs of points x, y in M .
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Proof. If the identity is an asymptotic embedding, we may choose g for g and

define

g(z) = sup{z′|f(z′) ≤ z}.

Then d1(x,y) ≤ g(d2(x,y)) since f(d1(x,y)) ≤ d2(x,y).
To see that the identity is an asymptotic embedding, we may again choose

g for one of the bounding functions and define

f(z) = inf{z′|g(z′) ≤ z}.

Then f(d1(x,y)) ≤ d2(x,y) since d1(x,y)) ≤ g(d2(x,y)). limz→∞ f(z) = ∞
because X is not compact. 5

3.3. Definition. Given a space M , two metrics d1 and d2 on M form a uniform

pair if the identity map id: (M1, d1)→ (M2, d2) is an asymptotic embedding.

When two metrics are a uniform pair, metric balls of uniformly bounded

diameter in one metric are uniformly bounded in the other metric.

The following result is from Chapter V of [3].

3.4. Proposition. Let G be a connected Lie group and K be its maximal compact

subgroup. Then there is a simply connected nilpotent Lie group N and a simply

transitive action of N on the homogeneous space G/K by isometries with respect

to the N-invariant metric d1. If d2 is the G-invariant metric on G/K then the

identity map of G/K with these two metrics is eventually continuous. In other

words, the two metrics d1 and d2 form a uniform pair.

Let Γ be a cocompact lattice in a connected Lie group. A uniform embedding

of Γ in N can be obtained by uniformly embedding Γ in G/K as the pullback

of the orbit Γ0 of x0 via the simply transitive action of N on G/K with either

metric d1 or d2 and then lifting the embedding toN . There is no natural action

of Γ on N but notice that the embedding of Γ is commensurable.

3.5. Theorem. Let N be a simply connected nilpotent Lie group with the left-

invariant Riemannian metric. Then

asdim(N) = dim(N).

Proof. A simply connected solvable group N of dimension n is isomorphic to

the semidirect product T ÏN0, where N0 is a normal simply connected solvable

Lie group and T is isomorphic to the group of real numbers which act on N0.

There is a corresponding vector space splitting of the Lie algebra n = t ⊕ n0

which is orthogonal with respect to a positive definite bilinear form β on n. If

the metric d inN is the Riemannian metric associated to β and T has the metric

associated to the restriction of β to t then the projectionπ : N → T is a distance

nonincreasing map. In fact, if y = yt+y0 then the length l(y) = l(yt)+ l(y0).
One can show that

Br (π
−1[a, b]) = π−1([a− r , b + r]).

For details see section V of [3]. For any point x ∈ [a, b], the function

ρ(a,b,x) : π−1([a, b])→ π−1(x)

given by ρ(a,b,x)(g) = g(x −π(g)) is bounded by b − a, that is,

d(g,ρ(a, b,x)(g)) ≤ b − a
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for all a, b, x, and g ∈ π−1([a, b]). Also, ρ(a,b,x) is equivariant with respect

to the left multiplication action by N0.

There is a useful equivalent characterization of asymptotic dimension [10, 7].

For a metric space X, asdim(X) ≤ n if for arbitrarily large number D there is

a uniformly bounded cover U of X such that every metric ball of radius D has

nonempty intersection with at most n+ 1 sets in U.

We will use induction on the dimension of N . Starting with dimension one,

let the covering of N = R be by the closed segments

U1 = {U1
i = [4Di,4D(i+ 1)], i ∈ Z}.

It is clear that asdim(R) = 1. Notice also that each setU1
i inU1 has the property

that there is the point xi = 4Di + 2D ∈ U1
i such that the metric ball centered

at xi with radius D is contained entirely in Ui, and another covering U2 can be

obtained by translating U1 (that is left-multiplying) by 2D. Because of the first

property, each metric ball with radius D intersects at most 3 subsets from the

new covering U1 ∪U2.

Now suppose that dim(N) = n, then dim(N0) = n − 1 in the semidirect

product decomposition above. We assume that (1) N0 is given the N0-invariant

Riemannian metric, (2) N0 has a covering consisting of two subcoverings U1
n−1

and U2
n−1 by uniformly bounded subsets with the property that each ball of

radius D intersects at most n subsets in each covering U1
n−1 and U2

n−1 and at

most n+1 subsets in the unionU1
n−1∪U

2
n−1. In order to construct two similar

coverings U1
n and U2

n of N , consider the translates tiN0 of N0 for ti = 4Di,

i ∈ Z, and the corresponding coverings U1
n−1,i and U2

n−1,i of tiN0. We will use

the notation

Sli (U) = ρ
−1(ti − 2D, ti, ti)(U),

Sri (U) = ρ
−1(ti, ti + 2D, ti)(U)

for any subset U of tiN0. Now define four collections of subsets of N as

U
1,l
n = {Sli(U)|U ∈ U

1
n−1,i, i ∈ Z},

U
1,r
n = {Sri (U)|U ∈ U

1
n−1,i, i ∈ Z},

U
2,l
n = {S2

i (U)|U ∈ U
2
n−1,i, i ∈ Z},

U
2,r
n = {Sri (U)|U ∈ U

2
n−1,i, i ∈ Z}.

Let U1
n = U

1,l
n ∪U

2,r
n and U2

n = U
1,r
n ∪U

2,l
n . It is clear that either of the two

coverings U1
n and U2

n has the property that a metric ball with radius D in N
intersects at most n + 1 sets from the covering. It is also clear that a metric

ball with radius D intersects at most n+2 sets from the covering U1
n∪U

2
n, as

required in the induction step. So by induction asdim(N) ≤ n.

To see the reverse inequality, recall that Gromov [10] defines another no-

tion of asymptotic dimension which he denotes simply asdim. This notion

is different from the asymptotic dimension conventionally used in this and

other papers in the literature. In order to avoid confusion in this proof, we

will use the notation asdim∗ for this possibly different number. Now Gromov

shows that for a compact acyclic manifold M , asdim∗(M̃) = dim(M). The

general inequality asdim∗ ≤ asdim gives dim(M) ≤ asdim(M̃). Applying this
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inequality in the case of M = Γ\N , for any cocompact lattice Γ in N , we see

dim(N) = dim(Γ\N) ≤ asdim(N). 5

A map between metric spacesφ : (X1, d1)→ (X2, d2) is a uniform embedding

if there are two real functions f andgwith limx→∞ f(x) = ∞ and limx→∞ g(x) =
∞ such that

f(d1(x,y)) ≤ d2(φ(x),φ(y)) ≤ g(d1(x,y))

for all pairs of points x, y in X1. It is known from [10] that asymptotic dimen-

sion does not decrease under uniform embeddings.

3.6. Corollary. Let Γ be a cocompact lattice in a connected Lie group G. Then

asdim(Γ) = dim(G/K).

Proof. Clearly, asdim(Γ) = asdim(G/K) since Γ embeds uniformly and com-

mensurably in the homogeneous space G/K. Now there are mutual uniform

embeddings of G/K in a simply connected nilpotent Lie group N with the N-

invariant Riemannian metric, and vice versa, according to [3], section IV. Thus

the three metric spaces have the same asymptotic dimension. 5
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