ON HOMOLOGICAL COHERENCE OF DISCRETE GROUPS

GUNNAR CARLSSON AND BORIS GOLDFARB

ABSTRACT. We explore a weakening of the coherence property of discrete
groups studied by F. Waldhausen. The new notion is defined in terms of
the coarse geometry of groups and should be as useful for computing their
K-theory. We prove that a group I’ of finite asymptotic dimension is weakly
coherent. In particular, there is a large collection of R[I']-modules of finite ho-
mological dimension when R is a finite-dimensional regular ring. This class
contains word-hyperbolic groups, Coxeter groups and, as we show, the co-
compact discrete subgroups of connected Lie groups.

1. INTRODUCTION

Let A be a ring with a unit. A left A-module is coherent if it has a resolution
by finitely generated projective A-modules. It is regular coherent or said to
have finite homological dimension if such resolution can be chosen to be finite.
This notion is particularly useful when A is a group ring R[T']; alas, homolog-
ically finite dimensional modules over generic group rings are very rare. We
will describe a weaker notion of coherence and a new method for constructing
finite dimensional modules using coarse geometric properties of the group I
Throughout the paper the ring R is assumed to be noetherian.

We should recall that F. Waldhausen [12] discovered a remarkable collection
of discrete groups I' such that all finitely presented modules over the group
ring R[I'] are regular coherent. It includes free groups, free abelian groups,
torsion-free one relator groups, their various amalgamated products and HNN
extensions and so, in particular, the fundamental groups of submanifolds of the
three-dimensional sphere. Waldhausen called this property of the group regu-
lar coherence and used it to compute the algebraic K-theory of these groups.
He also wondered if a weaker property of the group ring would suffice in his ar-
gument (see for example the paragraph after the proof of Theorem 11.2 in [12]).
When we compute the K-theory of geometrically finite groups of finite asymp-
totic dimension in [6], by proving surjectivity of the integral assembly map, we
indeed require a weaker coherence property than that of Waldhausen; however,
it is not directly related to his argument.

Using the coarse combinatorial geometry of the group, we will define a class
of finite presentations of R[I']-modules which we call admissible. We will also
use the geometry to introduce a large collection of finite dimensional R[I']-
modules which we call lean and which includes all modules with admissible
presentations.

1.1. Example. To illustrate the geometric nature of our method, we give a new
proof of coherence of the group of integers Z. In this case we consider an
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R[Z]-homomorphism of two free modules f: R[Z]™ — R[Z]™ and show that
the kernel of f is finitely generated when R is noetherian.

A geometric viewpoint on f is introduced by filtering each of the free mod-
ules by the R-submodules associated to the subsets [a,b] = {a,a+1,...,b —
1,b} of Z. Let R[a, bl stand for the k-tuples of group ring elements where
all group elements in the formal sum expressions come from [a, b]. Notice
that for each homomorphism f there is a number d such that f(R[a,b]™) C
Rla —d,b + d]™ for all choices of a < b.

Let k be an element of the kernel ker(f) and let k be written as a sum k =
> ki, where k; € R[5di,5d(i + 1)]™, and only finitely many k; are nonzero.
Observe that because of the property of the number d and the fact that k; +
2.j+ikj € ker(f), we have f(k;) = s;; + s;, where

sit=—f (Z kj) € R[5di —d,5di + d]"

Jj<i
and
Sir=—Ff ( > kj) eR[5d(i+1)-d,5di+1)+d]"
j>i
In fact, s;,- = —s;+1, for all i. Since R is a noetherian ring, im(f) N R[-d,d]"

is finitely generated, so there is a number e such that
im(f) nR[-d,d]" = f(R[-d —e,d +e]™) nR[-d,d]".

Now choose t; € R[5di—d —e,5di+d + e]™ so that f(t;) = Siy = —Si+1,1 and
thus all k; — t; + tj+1 are in the kernel:

Sflki—ti+tiv1) = f(ki) — f(t) + f(tie)
= (Sig + Sig) — Sit + Siv1,0
= (Si1+ Siy) — Sig—Sip = 0.

Since all elements k; —t;j+ti.1 € R[5di—d—e,5d(i+1)+d+e]™, we conclude
that the R[Z]-module ker( f) is generated by the R-submodule ker(f) "R[—d —
e,5d + d + e]™ which itself is finitely generated as R is noetherian.

For a general discrete group I', given an R[I']-module F with finite generating
set %, it is also an R-module with the generating set B = 3 XT. There is a locally
finite set function s: B — I which maps (o, y) to y. On the other hand, one
can associate to every subset S of I' the R-submodule generated by X x S.

Recall that a finitely presented group I' can be given a word metric specific
to the presentation. This makes I' a proper metric space. It is known that all
word metrics on the group are quasi-isometric.

1.2. Definition. Consider general functors f: P(I') — Modg (F) from the power
set of T ordered by inclusion to the R-submodules of F such that f(I') = F
and f(T) is a finitely generated R-module for each bounded subset T C I. We
will refer to F as an I'-filtered R-module. If f is I'-equivariant in the sense that
f(yS) = yf(S) forally €T and S c I then F as an equivariant T-filtered
R-module.

A homomorphism ¢: F; — F»> between finitely generated R[I']-modules with
fixed choices of filtrations f;, i = 1, 2, is boundedly controlled with respect
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to the bound D > 0 if ¢ f1(S) C f2(Bp(S)) for all subsets S C I'. Here Bp(S)
stands for the D-enlargement of a subset S in a metric space X that is the subset
{x € X|d(x,S) < D}. Let I be the image of ¢ and let i(S) = im(¢) N fo(S).
If ¢ in addition satisfies ¢pF; N f2(S) C ¢ f1(Bp(S)) then it is called bound-
edly bicontrolled of filtration D. When I is infinite, neither of the properties is
satisfied by all R[T']-homomorphisms.

1.3. Example. A boundedly controlled idempotent homomorphism of an equi-
variant filtered module is always boundedly bicontrolled. Indeed, if ¢: F — F
is an idempotent so that ¢? = ¢ then ¢p|I = id, so ¢F N f(S) C pf(S).

1.4. Definition. A pair of subsets S, T of a metric space X is (coarsely) antithetic
if for each number D > 0 there is D; > 0 so that Bp(S) N Bp(T) C Bp, (SN T).

Examples of such pairs include any two subsets of a simplicial tree as well
as complementary half-spaces in a Euclidean space.

1.5. Definition. A T'-filtration f of an R-module F is lean if it satisfies the fol-
lowing two properties for some fixed number d = dy > 0:

(1) for any subset S of T and y € f(S),
ye > f(Bay));

yes
(2) for any antithetic pair of subsets S and T, if y € f(S) and y € f(T)
then y € f(Ba(SNT)).
An R[T']-module is called lean if it has a lean equivariant I'-filtration by R-
submodules.

Notice that a lean R[I']-module is finitely generated. The class of lean R[T']-
modules certainly contains all free finitely generated R[I']-modules.

1.6. Definition. An R[T']-module is finitely presented if it is the cokernel of
a homomorphism, called presentation, between free finitely generated R[T']-
modules. If the homomorphism is boundedly bicontrolled, we call the presen-
tation admissible.

1.7. Definition. The group ring R[I'] is weakly coherent if every R[I']-module
with an admissible presentation has a projective resolution of finite type. We
say the ring R[T'] is weakly regular coherent if every R[I']-module with an ad-
missible presentation has finite homological dimension.

Groups of finite asymptotic dimension were introduced by M. Gromov [10].
Examples from this apparently very large class are the Gromov hyperbolic
groups [10], Coxeter groups [9], various generalized products of these, includ-
ing the groups acting on trees with vertex stabilizers of finite asymptotic dimen-
sion [2], and, more generally, fundamental groups of developable complexes
of finite dimensional groups [1]. We show in section 3 that cocompact lattices
in connected Lie groups also have finite asymptotic dimension.

The following is the main result of the paper.

1.8. Theorem. Let R be a noetherian ring and I be a discrete group of finite
asymptotic dimension. Then

(1) lean R[T']-modules have projective resolutions of finite type,
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(2) all R[T']-modules with admissible presentations are lean.
If, in addition, R has finite homological dimension then
(3) lean R[T']-modules also have finite homological dimension.

1.9. Corollary. Let R be a finite dimensional noetherian ring andT be a discrete
group of finite asymptotic dimension. Then the group ring R[T'] is weakly regular
coherent.

1.10. Example. To illustrate the construction of interesting lean finite-dimen-
sional modules, recall that idempotents between R[I']-modules are boundedly
bicontrolled. We will see that images and cokernels of boundedly bicontrolled
maps between lean modules are lean. Existence of idempotents over group
rings is well-known. Now given any idempotent between free finitely-generated
Z[T']-modules, reduction modulo a composite integer m gives another idempo-
tent whose image and cokernel are nonprojective modules over Z[T'].

We will prove weak coherence properties for discrete groups of finite as-
ymptotic dimension in section 2. Section 3 shows that cocompact lattices in
connected Lie groups have finite asymptotic dimension.

2. WEAK COHERENCE AND FINITE ASYMPTOTIC DIMENSION

2.1. Definition. A family of subsets in a general metric space X is d-disjoint if
dist(V,V’) = inf{dist(x,x")|x € V,x’ € V'} > d for all V, V'. The asymptotic
dimension of X is defined by M. Gromov [10] as the smallest number n such
that for any d > 0 there is a uniformly bounded cover U of X by n+ 1 d-disjoint
families of subsets U = U° u...u U".

It is known that asymptotic dimension is a quasi-isometry invariant and so
is an invariant of a finitely generated group viewed as a metric space with the
word metric associated to a given presentation.

The proof of Theorem 1.8 is based on the following characterization of met-
ric spaces of finite asymptotic dimension and a sequence of lemmas.

2.2. Definition. A map between metric spaces ¢: (M1,d,) — (M2,d») is an
asymptotic or uniform embedding if there are two real functions f and g with
limy_ f(x) = 00 and limy_ g(x) = o such that

fldi(x,y)) <dz2(p(x),d(y)) <g(di(x,¥y))
for all pairs of points x, v in M;.

2.3. Theorem (Dranishnikov [7, 8]). A group T has finite asymptotic dimension
if and only if there is a uniform embedding of T in a finite product of locally
finite simplicial trees.

We can use the notions of lean filtered R-modules and boundedly controlled
and bicontrolled homomorphisms of such modules associated to any proper
metric space X, with or without a group action. Thus an X-filtration of an
R-module F is a functor f: P(X) — Modg (F) from the power set of X to the R-
submodules of F such that f(X) = F and f(T) is a finitely generated R-module
for each bounded subset T ¢ X. Now conditions (1) and (2) in Definition 1.5
define the class of lean X-filtered modules.
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2.4. Lemma. Let P be a finite product of locally finite simplicial trees, with the
product word metric. Then the kernel of a surjective boundedly bicontrolled
homomorphism between lean P-filtered R-modules is lean.

Proof. Suppose P = [[1<jcm Ti and m: P — T = Ty, is the m-th coordinate
projection. Given a surjective boundedly bicontrolled homomorphism ¢: F —
G between two lean P-filtered R-modules, let D > 0 be a number such that
fil(¢p) < D, and let f and g be lean filtrations of F and G respectively, both of
filtration D.

We will show that the kernel K = ker(¢) equipped with the restriction of the
P-filtration f is lean. Fix a vertex ty in T. Given another vertex t € T, we define
its shadow as the subset Sh(t) = {t' € T|t € [ty,t']}. For every t € 0Bgkp (to),
0 <k, let

S(t) = Sh(t) N (Bsk+2)p(to) — Bek+1)p (to)) -
Since D is a filtration of f, if k is in the kernel K then k can be written as the
sum > l;, t as above, where I; € f(mw~1(Sy)). This is certainly a finite sum.
More generally, let S(t,l,u), for t € T with dist(tg,t) < I < u, be the subset
Sh(t) n (By(tg) — By (to)). Then

$(l) € g (m1S(t,6(k +1)D - D,6(k +2)D + D)).
Using that ¢ (1) = —p (D¢t L),

¢ (Z lt> €yg (n’lS(t,6(k +1)D + D,6(k +2)D - D))) :
t'#t

and that D is a filtration of g, we see that ¢(l;) = ¥} + y}? with

yi € g 1S(t,6(k+1)D —2D,6(k + 1)D + 2D))
and

yi e g(m1S(t,6(k +2)D —2D,6(k +2)D + 2D)).
Notice that

diam S(t,6(k + 1)D — 2D,6(k + 1)D + 2D) < 16D
and

diam S(t,6(k +2)D — 2D,6(k + 2)D + 2D) < 20D.

It is clear that the subsets S; . so obtained are pairwise disjoint. Since fil(¢) <
D, there are elements

z{ € f(r1S(t,6(k +1)D —3D,6(k +1)D + 3D))

and
z2 € f(rr71S(t,6(k +2)D — 3D,6(k + 2)D + 3D))
2

with ¢ (z}) = y/. It is easy to see that >;(z? — z}) = 0. Now k; = —z} + 1 — z?
are elements in the kernel K, each contained in

Fr = f(rt7'S(t,6(k + 1)D — 4D, 6(k + 2)D + 4D)),
so k can be written as a finite sum
() k=> k.

It follows that K is generated as an R-module by the submodules K; = K N F;
for all t as above. For each t, the diameter of the set S(t,6(k+1)D —4D,6(k +
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2)D + 4D) is bounded above by 28D which is independent of t. In particular,
this proves the statement when P = T. In this case K; are finitely generated as
submodules of finitely generated modules over the noetherian ring R.

In general, one can use induction on the number m of tree factors in P. Let
P; be the product szi T;. Let r;_1: Pi_1 — P; be the obvious projection. Now
given an element k in the kernel K such that there is § ¢ T with k € f(S) and
diam(7t;_1(S)) < C, we would like to see that k can be written as a sum > k¢ so
that k; € f(S;) and diam(7;(S¢)) < B where B is a number which depends on C
and D but not on n. This is easily achieved exactly as in the construction of the
sum (k) above with B = 2C + 15D. Applying this construction inductively, one
obtains a decomposition of the original k € K as the sum >’ k; with k; € f(Sy)
and diam(S¢) < (C + 15D)2™,

Property 2 of the lean modules for ker(¢p) is inherited from F. V

2.5.Lemma. Every R[I']-homomorphism ¢: F — G between a lean R[T']-module
F and an equivariant T-filtered module G is boundedly controlled as a homomor-
phism between filtered R-modules.

Proof. Let f be a lean equivariant I'-filtration of F. Consider z € f(S), then
z = > rizi where z; € f(Bi(x;)) for some x; € S. Since ¢ is an R[I]-
homomorphism, there is a number D > 0 such that ¢(z) is in g(Bg+p(x))
forall z € f(Bi(x)) and all x € T. Then ¢p(z) = > rip(zi) € > g(Baip(xi)) C
9(Ba+p(S)). V

2.6. Lemma. Every surjective boundedly controlled homomorphism of lean fil-
tered modules is boundedly bicontrolled. Therefore every surjective R[I']-homo-
morphism of lean R[I']-modules is boundedly bicontrolled.

Proof. If v € g(S) then y = > riy; with y; € g(Ba,(xi)), xi € g(S). Each
g(Ba.(x)) is a finitely generated R-module, so there is a constant C > 0 and
zi € f(Bag+c)(x) so that ¢(z;) = yi. Now z = X 7iz; isin f(Bgz+c(S)). V

2.7. Lemma. Let ¢: M| — M is an injective asymptotic embedding of proper
metric spaces. If S and T are coarsely antithetic in My then ¢(S) and ¢p(T) are
antithetic in M>. Conversely, if U and V are antithetic in M» then ¢~ (U) and
¢~1(V) are antithetic in M.

Proof. We will show the first statement, the proof of the second is similar.
Assume ¢ has the properties listed in Definition 2.2. Now for any choice of
d = 0 with f(d) > D
Bpp(S) N Bpp(T) C p(Ba(S)) N p(Ba(T))

= ¢(Ba(S) NnBa(T))

C P(By, (SNT))

C Bga)p(SnT)

C By, (p(S) n p(T)).

Here the equality follows from the injectivity assumption. So we can take Dy =
g(dy). vV
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2.8. Proposition. If ¢p: My — M, is an injective asymptotic embedding between
proper metric spaces then the M»-filtration f(S) = f(¢p~1(S)) induced from an
M, -filtration f is lean if and only if f is lean.

Proof. We show the necessity half of the argument. Notice that the fact that
dr(Pp(x),p(¥)) < g(di1(x,y)) implies By (x) C ¢~ (Bya)(P(x)) foralld > 0.
Suppose f is lean, then given y € £« (S) = f(¢p~1(S)) and
ye >  fBalx),
xep-1(S)
we have

ye > fle By (P(x)))

xep~1(S)

= > fiBgw(P(x)))

xep-1(S)

C > feBga(2)).

zes
For the second property, if v € f«(S) N f«(T) = f(p1(S)) N f(¢p~1(T)) then
¥ € f(Ba(p~(S)) N Ba(p~"(T)))
C f(d ' (Bya)($)) N~ (Bga)(T)))
= f(¢~" Bga)(S) N Bya)(T))
C fx(Bg (SN T)).
for some d;. So f is lean with characteristic constant d;. V

2.9. Corollary. LetT be a finitely generated group viewed as a metric space with
the word metric induced by a fixed presentation. If T has a uniform embedding
io: I — P in a finite product P of locally finite simplicial trees then the kernel of
a surjective R[T']-homomorphism of lean R[I']-modules is lean. In particular, it
is finitely generated.

Proof. The given homomorphism ¢: F; — F> between two lean R[I']-modules
can be thought of as a boundedly controlled homomorphism between lean R-
modules with the P-filtrations f defined by fo(S) = f(ig!(S)). From Proposi-
tion 2.8 we see that fj is lean if and only if f is lean. When ¢ is surjective, it
is boundedly bicontrolled by Lemma 2.6. The rest follows from Lemma 2.4. V

2.10. Lemma. The image of a boundedly bicontrolled homomorphism of lean
filtered modules is lean.

Proof. Let D be a filtration degree of the homomorphism ¢: F — G. If I is the
image of f, it has the natural I'-equivariant filtration given by i(S) = I n g(S).
If ¥ € g(S) then there is z € f(Bp(S)) with ¢(z) = y written as z = > ¥iz;
for some z; € f(By.(xi)) and x; € Bp(S). So y = Y rip(z;) and Pp(z;) €
9(Ba.+p(xi)). In other words,
y e Z 1(Bag+2p(x)).
xes

To see that the second characteristic property of lean modules is inherited by
the image from G, we show that generally the image of aboundedly bicontrolled
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homomorphism with the kernel satisfying property 1 also satisfies property 2
in Definition 1.5. Let y € g(S) n g(T), then there are zg € f(Bp(S)) and
zr € f(Bp(T)) such that ¢p(zs) = ¢p(z7) = y. Thus k = zg — z7 is in the
kernel K = ker(¢). Using property 1 of the kernel K, write k = ks + k1 where
ks € f(Ba;+p(S)) and kr € f(Bg,+p(T)) so that zs — ks = zr + kr and again
¢d(zs — ks) = ¢p(zr + kr) = y. Now since F has property 2 and zs — ks =
zr + kr is in f(Bdf+D(S)) N f(BderD(T)), it is also in f(BgderD(S NnT)). So
Y €9Bai;+2p(SNT)). V

2.11. Corollary. The cokernel of a boundedly bicontrolled homomorphism of
lean P-filtered R-modules is lean.

Proof of Theorem 1.8. Given a lean R[I']-module F, let F; be the free R[I']-
module on the finite generating set X of F. We view it as a lean R-module with
the canonical filtration induced from the product generating set 3 x I'. Then
the surjection 1r: F; — F is boundedly bicontrolled. The kernel K; = ker(1) is
lean by Lemma 2.4. Construct a free finitely generated R[I']-module F> with a
projection 111 : F» — K;. By Lemma 2.5, 11; is boundedly controlled, hence by
Lemma 2.6 it is boundedly bicontrolled. This shows that F is finitely presented
as the quotient of the composition d; = i; 1™ which is boundedly bicontrolled.
This construction also inductively gives a resolution by free finitely generated
R[I']-modules.

Part 2 of Theorem 1.8 follows directly from Corollary 2.11.

For part 3, consider the n-th syzygy module K;,, = ker(d,) where n is the
homological dimension of the ring R. It is known from the Syzygy Theorem
that G is a projective R-module if it fits into a resolution

0O0—G—P,—Ppq1—...—PL—F—0

of an R-module F over a regular ring R of homological dimension hd(R) < n
and all modules P, ..., P,, are projective, cf. Lemma 4.1.6 of [13]. This certainly
applies to K,,. Since R[T']-modules which are free as R-modules are also free
R[T']-modules, it follows easily that R[I']-modules projective as R-modules are
projective as R[I']-modules. Since K, is lean, it is finitely generated over R[I'].
This shows that F has a finite projective resolution of length at most n. ¥V

3. THE ASYMPTOTIC DIMENSION OF UNIFORM LATTICES

This section proves that the asymptotic dimension of cocompact discrete
subgroups of a connected Lie group G is the dimension of the homogeneous
space of maximal compact subgroups in G.

3.1. Definition. A map between metric spaces ¢: (M;,d) — (Mp,d>) is even-
tually continuous if there is a real function g such that dx(¢(x),Pp(y)) <
g(dy(x,y)) for all pairs of points x, y in M;.

3.2. Proposition. If M; = My, the identity map id: M; — M is a uniform em-
bedding if and only if the identity map is eventually continuous in both ways,
that is, there are real functions g and g such that d»(x,y) < g(di(x,y)) and
di(x,y) <g(dx(x,y)) for all pairs of points x, vy in M.
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Proof. 1If the identity is an asymptotic embedding, we may choose g for g and
define
g(z) =sup{z'|f(Z') < z}.
Then d; (x,y) < g(da(x,y)) since f(di(x,y)) <d2(x,y).
To see that the identity is an asymptotic embedding, we may again choose
g for one of the bounding functions and define

f(z) =inf{Z'|g(2") < z}.

Then f(dy(x,y)) <dx(x,y) since di(x,y)) <g(d2(x,y)). lim,_ f(z) =
because X is not compact. V

3.3. Definition. Given a space M, two metrics d; and d> on M form a uniform
pair if the identity map id: (M;,d;) — (M>2,d>) is an asymptotic embedding.

When two metrics are a uniform pair, metric balls of uniformly bounded
diameter in one metric are uniformly bounded in the other metric.
The following result is from Chapter V of [3].

3.4. Proposition. Let G be a connected Lie group and K be its maximal compact
subgroup. Then there is a simply connected nilpotent Lie group N and a simply
transitive action of N on the homogeneous space G |K by isometries with respect
to the N-invariant metric d,. If dy is the G-invariant metric on G /K then the
identity map of G/K with these two metrics is eventually continuous. In other
words, the two metrics d, and d, form a uniform pair.

Let I be a cocompact lattice in a connected Lie group. A uniform embedding
of I in N can be obtained by uniformly embedding I' in G/K as the pullback
of the orbit Iy of x( via the simply transitive action of N on G/K with either
metric d; or d, and then lifting the embedding to N . There is no natural action
of I on N but notice that the embedding of I' is commensurable.

3.5. Theorem. Let N be a simply connected nilpotent Lie group with the left-
invariant Riemannian metric. Then

asdim(N) = dim(N).

Proof. A simply connected solvable group N of dimension n is isomorphic to
the semidirect product T X Ny, where Ny is a normal simply connected solvable
Lie group and T is isomorphic to the group of real numbers which act on Nj.
There is a corresponding vector space splitting of the Lie algebra n = t & ng
which is orthogonal with respect to a positive definite bilinear form g on n. If
the metric d in N is the Riemannian metric associated to 8 and T has the metric
associated to the restriction of f to t then the projection r: N — T is a distance
nonincreasing map. In fact, if v = y; + y then the length I(y) = L(y;) + (o).
One can show that

B, (t'[a,b]) =t Y ([a-7,b+7]).
For details see section V of [3]. For any point x € [a, b], the function
pla,b,x): m 1 ([a,b]) - T 1(x)
given by p(a,b,x)(g) = g(x — m(g)) is bounded by b — a, that is,
d(g,p(a,b,x)(g)) <b-a
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forall a, b, x,and g € = ([a, b]). Also, p(a, b, x) is equivariant with respect
to the left multiplication action by Nj.

There is a useful equivalent characterization of asymptotic dimension [10, 7].
For a metric space X, asdim(X) < n if for arbitrarily large number D there is
a uniformly bounded cover U of X such that every metric ball of radius D has
nonempty intersection with at most n + 1 sets in ‘U.

We will use induction on the dimension of N. Starting with dimension one,
let the covering of N = R be by the closed segments

U' = {U} = [4Di,4D(i + 1)],i € Z}.

Itis clear that asdim(R) = 1. Notice also that each set Ul.1 in ‘U! has the property
that there is the point x; = 4Di + 2D € U} such that the metric ball centered
at x; with radius D is contained entirely in U;, and another covering ‘U? can be
obtained by translating U! (that is left-multiplying) by 2D. Because of the first
property, each metric ball with radius D intersects at most 3 subsets from the
new covering U' U U2.

Now suppose that dim(N) = n, then dim(Ny) = n — 1 in the semidirect
product decomposition above. We assume that (1) Ny is given the Ny-invariant
Riemannian metric, (2) Ny has a covering consisting of two subcoverings fu;,l
and U,Z,L,l by uniformly bounded subsets with the property that each ball of
radius D intersects at most n subsets in each covering U}, _; and U%_, and at
most n + 1 subsets in the union ‘U},_; UU2_;. In order to construct two similar
coverings U}, and ‘U2 of N, consider the translates t;Ny of Ny for t; = 4D1,
i € Z, and the corresponding coverings fuil,u and uﬁl,l,i of tiNo. We will use
the notation

SHU) = p~'(t; — 2D, t;, ;) (U),
SI(U) = p~ ' (ti, t; + 2D, t;) (U)
for any subset U of t;Ng. Now define four collections of subsets of N as

Uy = {(Slulueul_,,iez,

n-1,i’

Uy" = {(ST(U)IU e UL | .,,ieT),

n-1,i»

Uy = {S2(WU)|U e U, i€},

n-1,i’

UZ" = (ST(U)|U € U2, , i€}

n-1,i’

Let UL = UL' UUZ" and U2 = UL" U UL, Ttis clear that either of the two
coverings U}, and ‘U2 has the property that a metric ball with radius D in N
intersects at most n + 1 sets from the covering. It is also clear that a metric
ball with radius D intersects at most n + 2 sets from the covering U}, U U2, as
required in the induction step. So by induction asdim(N) < n.

To see the reverse inequality, recall that Gromov [10] defines another no-
tion of asymptotic dimension which he denotes simply asdim. This notion
is different from the asymptotic dimension conventionally used in this and
other papers in the literature. In order to avoid confusion in this proof, we
will use the notation asdim, for this possibly different number. Now Gromov
shows that for a compact acyclic manifold M, asdim; (M) = dim(M). The
general inequality asdim, < asdim gives dim(M) < asdim(M). Applying this
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inequality in the case of M = I'\N, for any cocompact lattice I' in N, we see
dim(N) = dim(I'\N) < asdim(N). V

A map between metric spaces ¢: (X1,d;) — (X2,d>) is a uniform embedding
if there are two real functions f and g with limy - f(x) = co and limy_ g(x) =
oo such that

fldi(x,y)) <d2(Pp(x), () < gldi(x,¥))
for all pairs of points x, y in X;. It is known from [10] that asymptotic dimen-
sion does not decrease under uniform embeddings.

3.6. Corollary. LetT be a cocompact lattice in a connected Lie group G. Then
asdim(T') = dim(G/K).

Proof. Clearly, asdim(I') = asdim(G/K) since I embeds uniformly and com-
mensurably in the homogeneous space G/K. Now there are mutual uniform
embeddings of G/K in a simply connected nilpotent Lie group N with the N-
invariant Riemannian metric, and vice versa, according to [3], section IV. Thus
the three metric spaces have the same asymptotic dimension. V
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