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Abstract. We construct anew compactification of a noncompact rank one globally symmetric space.
The result is a nonmetrizable space which also compactifies the Borel—Serre enlargement X of X,
contractible only in the appropriate Cech sense, and with the action of any arithmetic subgroup of the
isometry group of X on X not being small at infinity. Neverthel ess, we show that such a compacti-
fication can be used in the approach to Novikov conjectures developed recently by G. Carlsson and
E. K. Pedersen. In particular, we study the nontrivia instance of the phenomenon of bounded satura-
tion in the boundary of X and deduce that integral assembly maps split in the case of a torsion-free
arithmetic subgroup of asemi-simple algebraic Q-group of real rank one or, in fact, the fundamental
group of any pinched hyperbolic manifold. Using asimilar construction we also split assembly maps
for neat subgroups of Hilbert modular groups.

M athematics Subject Classifications (1991): 19L47, 22E40, 55N 15, 57R20.

Key words: Novikov conjecture, assembly, equivariant K -theory, arithmetic lattice.

I ntroduction

Let " be adiscrete group. Consider the assembly map «: BT'y A S(R) — S(RT),
where S(R) isthe K -theory spectrumfor aring R (see Section 1.3 below or Loday
[41]). There are also L-, A-theoretic and C*-algebraic versions of this map. It is
known that for S = L and R = Z, the splitting of « implies the classical form
of the Novikov conjecture on the homotopy invariance of higher signatures for
manifolds with the fundamental group T". By analogy, each of the other versionsis
called the (integral) Novikov conjecturein S-theory, and there are separate reasons
for proving each of them (see Section 1.3). In the presence of torsion, assembly
maps do not always split, so attention is naturally restricted to torsion-free groups.

Carlsson, Pedersen, and Vogell verified the conjecturein K-, L- and A-theories
for groups satisfying certain conditions ([16, 19]). For the sake of simplicity we
state only the K -theoretic version:

THEOREM 1 (Carlsson—Pedersen). Suppose there exists ET' such that the I'-
action is cocompact and extends to a contractible, metrizable compactification
X of ET sothat theaction of I" on X issmall at infinity, then « isa split injection.
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If I" acts on a space X with an equivariant compactification X =XUY,the
action is called small at infinity if for every y € Y, compact subset Z C X, and
neighborhood U C X of y, there exists a neighborhood V' C X of y such that if
gZNV # (forsomeg € I'thengZ C U. Examplesof suchsituationsaretheideal
compactification of a complete nonpositively curved manifold (with a cocompact
action) or the analogous constuction for a contractible Rips complex associated
to a Gromov hyperbolic group. Notice that these are essentially geometric com-
pactifications performed with one's eye toward extending (quasi-)isometries to the
boundaries so that quasi-identities extend to trivial maps of the boundary. In par-
ticular, every subset of Y in these examplesis boundedly saturated in the sense of
the following definition. A set A C Y is boundedly saturated if for every closed
set C'in X withC N'Y C A the closure of any of the d-neighborhoods of C'\Y
satisfies (C\Y)[d] NY C A.

After a considerable refinement of the methods in [17], this result has been
improved to

THEOREM 2 (Carlsson—Pedersen). Suppose there exists ET" with the one-point
compactification ET'+ such that the I'-action on ET iscocompact and extendsto a
Cech-acyclic compactification X = ET' LI Y so that thereis a I'-invariant system
{a} of coverings of Y by boundedly saturated open sets and a weak homotopy
equivalence

holim (NU A KR) ~ X holim(Na A KR),
— —
UeCov EI'T ac{a}

then « is a split injection.

This theorem is part of a very general approach initiated in [13, 15]. The
statement of Theorem 2 and its modification that we actually use will be explained
in more detail in Section 3. The purpose of this article is to provide examples
where these new phenomenaappear and get used. A general torsion-free arithmetic
group seems to admit similar constructions, but then their analysis becomes more
involved. From such a perspective, this paper completes the first two stepsin a
general inductive argument. Here we prove

THEOREM 3. Let G be a semi-simple linear algebraic group defined over Q of
real rank one. If T" is a torsion-free arithmetic subgroup of G then « is a split
injection.

The simplest example of the situation in Theorem 3iswhen G = SL,. Let X
be the hyperbolic disk which is the symmetric space associated to GG. Borel and
Serre construct ET for any torsion-free arithmetic subgroup I" of G by blowing up
each rational point on the boundary circle of X to aline. To compactify this space,
we blow up al of the remaining points on the circle and provide each of the lines
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with two limit points. The resulting boundary of X is set-theoretically the cylinder
S1 x I. The compact Hausdorff topology we introduce in our space restricts to the
circular lexicographic order topology on St x I. In particular, for any arc C' C S2,
C x I is homeomorphic to the classical unit square with the lexicographic order
topology. Recall that thistopology is compact but not separable. Thismakes C' x I
and S x I and our space nonmetrizable.

It will be observedthat thereisan anal ogue of the construction abovewhere only
the rational points are resolved to lines. For some but not all groupsin Theorem 3
the action at infinity in the altered compactification is small. For groups where a
cusp stabilizer is non-Abelian (e.g., for symplectic groups) the action will not be
small in either compactification; hence the title of this paper.

Many of our constructionsand results can be done and hold in greater generality
than needed for the proof of Theorem 3. For example, Section 4 compactifies
N = ET for atorsion-free finitely generated nilpotent group I". We could follow
it by a proof of the Novikov conjecture for such groups which is not a new result
by itself (cf. [15, 48]). The importance of Section 4 is the role as the base case it
playsin the construction of X for an arbitrary arithmetic group. Here the action of
Ion N is adready not small at infinity. This property is preserved in the ambient
construction for G from Theorem 3 where copies of N for certain one or two step
nilpotent groups embed. Section A.3 contains a discussion of this situation and its
relation to other approachesto Novikov conjectures.

The arithmeticity hypothesisin Theorem 3 can be dropped. When the construc-
tion of Borel-Serrein our argument is replaced by a‘ neutered’ pinched Hadamard
manifold (asin [25]), the stabilizers of boundary components are nilpotent, and the
proof of Theorem 3 in conjunction with Section 4 works verbatim to show

THEOREM 4. If T" isatorsion-free fundamental group of a complete noncompact
finite-volume Riemannian manifold with pinched negative sectional curvatures
—a? < K < —b? < Othen o isa split injection.

It is known from [35] that there are pinched hyperbolic manifolds in each
dimension n. > 4 which are not locally symmetric. All of these groups may be
classified as hyperbolic relative to a finite family of nilpotent subgroups in the
senseof [25]. It seemsvery plausiblethat using a cross of the constructions of Rips
and Borel—Serre, our argument also applies in this combinatorial situation.

In Section A.2 the argument is adjusted dlightly to apply to lattices in semi-
simple Lie groups of higher R-rank:

THEOREM 5. If T" isa neat arithmetic subgroup of a Hilbert modular group then
a isasplitinjection.

Theuseof a‘'topological’ approach asin Theorem 2 seemsto be essential in both
of our applications. Recall that no SL(O4) isbicombable ([31, Proposition 6.14])
and neither of the groupsI' in G # SO(n, 1) from Theorem 3 is combable ([24,
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Theorem 1.2]). These results make it doubtful that our groups have reasonable
geometric compactifications with small actions at infinity for it is precisely the
combingsthat are used to produce examples after Theorem 1.

The main body of this paper deals with the K-theoretic assembly map. In
Section A.1 we discuss the extension of our results to other versions of the map.

The material in this paper is a part of my Cornell Ph.D. thesis [32] which also
contains aproof of Novikov conjecturesfor torsion-freelattices in the semi-simple
group SL 3 of split rank two.

1. Preliminary Material
1.1. HOMOTOPY LIMITS

We will use the language of simplicia homotopy theory ([43], [10, Part 11]). A
functor from a small category F:C — D isaso caled aC-diagramin D. Recall
that thelimit and the colimit of F' are objectsof D characterized by certain universal
properties. They may not exist for an arbitrary diagram in s—SeTs. The homotopy
limit and colimit are simplicial sets which exist for any diagram F' and satisfy
universal properties with homotopy theoretic flavor. Homotopy limits are natural
in both variables. Here is a list basic properties of homotopy limits and colimits
which will be referred to later.

THEOREM 1.1.1 ([10, XI, Section 3]). There are natural maps

[im ¥ — holimF or hocolimF — colimF
c c c c

whenever the appropriate limit or colimit exists.

THEOREM 1.1.2 (Homotopy Invariance, [10, X1, Section 5]). Let ¢: FF — G bea
natural transformation of functors such that each ¢(C): F(C) — G(C), C € C,
is a weak equivalence. Then hocolime is a weak equivalence. If F(C) and G(C)
areKan for all C' € C then holim¢ is also a weak equivalence.

THEOREM 1.1.3 (Cofinality Lemma, [10, XI, Section 9]). Let ®:C — (' and
F:C' — s—SeTs be functors from small categories. If ® is right cofinal (that
is, C' | ® is nonempty and contractible for every C’ € C’) then hocolim® is a
weak equivalence. If @ isleft cofinal (that is, @ | C’ is nonempty and contractible
for every C' € C') and each F(C"), C' € (', is Kan, then holim® is a weak
equivalence.

THEOREM 1.1.4 ([21, Section 9]). Let C be a contractible small category and
F:C — s—SeTs be afunctor such that, for each morphisme € C, F(c) is aweak
equivalence. Then, for every object C' € C, the obvious map
17 (C): FC — hocolim F
T’
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isaweak equivalence. If each F'(C), C € C, isKan then

H(C):holimF — FC
¢

is a weak equivalence.

We assume familiarity with the language of spectra ([1]). The results above
generalize to simplicial spectra ([15]), the notion of homotopy (co)limit being
extended via a level-wise construction in the obvious way. The foundational mate-
rial on simplicial spectra can be found in [53, Section 5].

THEOREM 1.1.5 (Bousfield—Kan Spectral Sequence[10, 15]). Given a functor
F:C — SPECTRA, let m; o F':C — ABGROUPS be the composition with the stable
;. Then thereis a spectral sequence converging to
m(holimF) with E5? = limP (m, o F).
(—

%
c c

The following strengthening of the general Cofinality Lemmais very useful.

THEOREM 1.1.6 (Modified Cofinality Lemma[17, Lemma2.8]). Let P be a left
filtering partially ordered set viewed as a category, and let .2 P° — P be the
inclusion of a partially ordered subset, also left filtering. Let F: P — SPECTRA
bea functor and assumethat for every z € P thereexist 2’ € P andy € P° sothat
z' >z, 2’ >y, andsothat F(z' > y) isaweak equivalence. Then the restriction
map

1" holimF — holim F
— —
P PO

is a weak equivalence.

1.2. ALGEBRAIC K-THEORY

This describes what we mean by K-theory here. In [47] Quillen constructed K -
groups of aring R, K,(R), n > 0. Before that the lower K-groups K, (R),
—o00 < n < 2, were studied by Bass, Milnor, and others. The groups of Quillen
can be obtained as stable homotopy groups of connective spectra. The most sulit-
able delooping machine to use in this situation is Thomason's ([54]) functor Spt.
Pedersen and Weibel ([44, 45]) used this functor and controlled algebrato produce
a nonconnective spectrum K (R) whose homotopy groups are all K,(R), n € Z.
They also show that this agrees with the nonconnective spectrum of Gersten and
Wagoner.
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The functor of Thomason constructs a connective spectrum for every small
symmetric monoidal category. If F is the symmetric monoidal category of iso-
morphisms of free finitely generated R-modules then K°™(R) = Spt(F) is the
connective K -theory spectrum of R. More generaly, if A isasmall additive cate-
gory then the category of isomorphismsi.A of A isasymmetric monoidal category.
Let C(A) denote the category of .A-objects parametrized over the metric space Z*
and bounded morphisms (the prototype of the categories defined in Section 7) then
[45] constructs functorial maps

Spt(iC(A)) — QSpt(iCx11(A)).
Taking

K (A) = hocolim Q" Spt(iC,, (A))
n>0

one gets a nonconnective spectrum. Again, if A is the category of free finitely
generated R-modulesthen K (R) = K (A) is the Gersten—Wagoner spectrum.

1.3. ASSEMBLY IN ALGEBRAIC K-THEORY

Let I" be adiscrete group and R aring. The assembly map in algebraic K -theory
b (BU; KR) — K, (RT)

was first constructed by J.-L. Loday. Let::I' — GL,,(RI') betheinclusion of I' in
(R[')* = GL1(RI"). Thenthereisamap

I' x GL,(R) 2 GL1(RT) x GL,(R) -2 GL,(RT)
defined by
g (aij) — (g - aij).

One can apply the classifying space functor B, pass to the limit asn — oo, and
apply Quillen’s plus construction to induce the map

+Aid
BT, ABGL(R)t 2% BGL(RT)* A BGL(R)™ —5 BGL(RI)*.

This product is compatible with the infinite loop space structure of BGL(_ )™ ([41,
Section 11.2.16]). Delooping of this map resultsin the assembly map of spectra

a: BTy A K(R) — K(RT),

where BT, isthe classifying space together with a disjoint base point, and K (R)
is the Gersten—Wagoner nonconnective K -theory spectrum asin Section 1.2. This
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is the assembly map in algebraic K -theory. Loday’s assembly map is induced by
taking the homotopy groups:

hy(BT; KR) = m,(BT'y A KR) %% 7,(K(RT)) = K,(RT).

Thereisat least a couple of reasons why the study of this map is of importance
in geometric topology. One is the involvement of K (ZI") in the description of
the space of automorphisms of a manifold M with myM = T'. The other is the
connection with Novikov and Borel conjectures.

It is known that the homotopy invariance of higher signatures follows from
the splitting of the rational assembly map « in L-theory. The assembly naturally
maps the rational group homology containing the signature to the surgery L-group
where the image is a priori homotopy invariant. If the assembly is actualy an
injection then the signature is homotopy invariant. This is the modern approach
to proving the Novikov conjecture. In fact, stronger integral conjectures can be
stated when integral group homology is used, and there are K -, A-theoretic, and
C*-algebraic analogues of these integral maps. For example, the statement parallel
to the above about classes in K O[3] is equivalent to integral injectivity of o (see
[57]). It makes sense, therefore, to call the conjecture that the assembly map in K -
theory is injective for torsion-free I' the integral Novikov conjecture in K-theory.
A stronger and geometrically important conjecturethat « isanisomorphismisthen
the K -theoretic part of the Borel conjecture. For example, the vanishing of Wh(T")
would follow as acorollary to this.

There is another very interesting geometric application. The splitting of the
C*-algebraic version of the assembly map which can be obtained by applying the
same approach as taken here (Carlsson—Pedersen—Roe) gives what J. Rosenberg
calls the strong Novikov conjecture. That is known to imply rigidity and vanishing
results for higher elliptic genera ([40]).

1.3. ARITHMETIC GROUPS
Let G bealinear algebraic group defined over Q andwrite G(Z) = G(Q)NGL,(Z).

DEFINITION 1.3.1. A subgroup I" of G(Q) isarithmetic if I" and G(Z) are com-
mensurable, that is, if the subgroup I' N G(Z) hasfiniteindex in both I' and G(Z).
A discrete group I is arithmetic if it is isomorphic to an arithmetic subgroup of
some group G as above.

Consider the real points G(R) of G. Itisarea Liegroup, and I' C G(R) is
a discrete subgroup. The R-rank of G coincides with the rank of the symmetric
space X associated with G(R). When G is semi-simple, T" acts freely and properly
discontinuously on X. The quotient manifold A/ = X/T" is not compact unless
rankG = 0 but has finite invariant volume, i.e., I isa nonuniform lattice in G(R).

The most famous class of arithmetic groups are congruence subgroups defined
as the kernels of surjective maps G(Z) — G(Z,) induced by reduction mod ¢ for
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various levels ¢. Every arithmetic group contains a torsion-free subgroup of finite
index, but, according to Minkowski, the congruence subgroups of SL,, of all levels
¢ # 2 are themselvestorsion-free (see [12, p. 40]).

If G isaconnected linear simple Lie group with R-rank one, there is a com-
plete classification available ([55]). The four possibilities are the Lorentz groups
SOo(n, 1), SU(n, 1), Sp(n, 1), and F4, the automorphism group of the exceptional
simple Jordan algebraor, equivalently, the group of isometries of the Cayley projec-
tive plane with the appropriate Riemannian metric (see[2]). The class of rank one
arithmetic groups contains representatives of various interesting group-theoretic
phenomena: discrete subgroups of SO(n, 1) and SU(n, 1) are K-amenable while
latticesin Sp(n, 1) have Kazhdan property 7'

Examples of torsion-free arithmetic subgroups here can be congruence sub-
groups of level ¢ > 3 of SL(n + 1,Z) N SOgp(n,1). This identifies a particular
system of torsion-free arithmetic groups to which our Theorem 3 applies.

2. Modified Cech Homology

This section explains the setup for the recent work of Gunnar Carlsson and Erik
Pedersen referred to in the Introduction.

2.1. CLASSICAL CECH HOMOLOGY

Let ¢ be an open covering of atopological space X. The nerve NU of U is the
simplicial complex with members of ¢/ asverticesand asimplex {U1, ..., U} for
each subset withU; N --- N U, # (). We may think of NI/ asasimplicial set N, U.
If V is another open covering of X, and for each U € U thereisV (U) € V sothat
U C V(U) then one says that U refinesV and writestd > V. If U = {Uy }aca
and V = {Vj} 3¢ then the map of coveringst/ — V isaset map f: A — B such
that U, C Vy(y) for dl a € A. Clearly, this map of vertices extends to a map
of nerves N f: NU — NV. All such maps for one particular refinement &/ > V
are contiguous (see [23]) and, therefore, induce the same map on homology or
homotopy groups of the nerves. Consider the partially ordered system Cov X of
al finite open coverings of X. The resulting inverse system of Abelian groups
{Hn(N_;S)}cov x adways produces the inverse limit H,(X;S) called the nth
Cech homology group. The contiguity property of the refinement maps implies
that the same inverse systemisobtained as { H,,(N_; S) }covs x, Wwhere Cov® X is
the category of coverings and maps even though the functor itself is no longer a
pro-Abelian group.

Given amap of spaces f: X — Y, any V € CovY pulls back to a covering
f*V € CovX in the obvious way. The injections N f*V — NV induce the
universal map

lim H,(N_;S)— H,(Y;S).
(—
f*Covy
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But the inclusion of inverse systems f*CovY C Cov X induces another universal
map

H,(X;S) — lim H,(N_;S)
(—
f*CovY

and the composition of thetwo is denoted by f... Thismakes H, functors. Actually,
H, are aimost a homology theory: they do not satisfy the exactness axiom ([23]).
Thisisthe classical Cech homology theory.

2.2. MODIFIED CECH HOMOLOGY

Another way to construct afunctor similar in spirit isto take the inverselimit of the
diagram of nerves { N__}coys x, OF spectra{N_ A S}covsx, OF sSimplicial spectra
{N, _ A S}cows x, and then take homology groups, or stable homotopy groups,
of the result. However, for the limit above to always exist, it must be a homotopy
inverse limit. Notice also that the functor V__ can only be defined on Cov® X and
not on Cov X . The maps are induced just as above.

Notation. Whenever we write holim (N__ A K R) we understand a simplicial
spectrum, where N__ stands for the simplicial set generated by the classical nerve
complex viathetotal singular complex functor. The maps are usually induced from
PL maps.

Remark 2.2.1. The values of the functor N:CovSX — s—SETS mapping a
covering U to the simplicial nerve NU{ are not necessarily fibrant. To improve
homotopy invariance properties of homotopy limits we adopt a convention which
is used in [15]. Recall that there is a functorial replacement K*°Q:S — wS of
a spectrum by a weakly equivalent Kan Q-spectrum. The convention is that if
F:C — S is adiagram whose values are not Kan 2-spectra then the notation
holim(#) will mean holim(K*°QF'). This convention simplifies hypotheses in
standard results about homotopy limits.

Recall that C is aleft filtered category if for any two objects Cy, C; € C there
exists C3 € C with Mor(C3, C1) # 0 # Mor(C3, C>). If, in addition, for any two
morphisms mz1, my € Mor(C, C") inC thereexists C’ € C and m € Mor(C’, C)
with mj o m = mgy om, then C is called left filtering. According to Quillen ([47]),
every left filtering category is contractible.

Note that the homotopy limit above is taken over the category Cov® X with
morphism sets Mor (U4, V) consisting of contiguous mapsi/ — V. It is easy to see
that although Cov® X is left filtered, it is not |eft filtering. Instead of this category
Carlsson and Pedersen use, following Friedlander, the category of rigid coverings.
This category is, in fact, a partially ordered set: morphism sets are either empty
or singletons. One advantage of this choice is the ease with which the Cofinality
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Lemma 1.1.3 and the Modified Cofinality Lemma 1.1.6 can be applied. The more
important consequence is the exactness property for the resulting Cech homol ogy
(Definition 2.2.3).

DEFINITION 2.2.2. A finite rigid covering of X is a set function 5 from X to
open subsets of X which takes only finitely many values and satisfies (1) z € Bz
foralz € X and(2) B~1U c U forall U € im(3). Eachfiniterigid covering can
be thought of as a covering in the usua sense. Set N(5) = N({f(z) : z € X}).
Thistime the nerveis an infinite simplicial complex unless X isfinite.

We will denote the category of finite rigid coverings by Cov X. There is a
uniqguemap 1 — B2 if B1(x) C Bo(x) foral z € X. Now Cov X isleft filtering,
so the maps can be indicated simply: 51 > .

Define F': Cov X — Cov®X tobetheforgetful functor 8 — {U, = B()}zex,
where Cov®X isthe category of open coveringsof X which may beinfinite as sets
but employ only finitely many open subsets of X. In particular, F'3, 8 € Cov X,
are alwaysinfinite if X isinfinite, but the covering sets come from thefinite im .
Now N () = N(F(p)) isclearly afunctorial construction.

Let us emphasize that the assignment 3 — im 3 € Cov® X is not functorial.
However, the obvious projection F'(3) — im 3 induces a homotopy equivalence
on nerves according to Quillen’s Theorem A.

DEFINITION 2.2.3. TheCech homology of X with coefficientsin S isthe simpli-
cial spectrum valued functor

h(X;S) =holim(N_AS).
(—
Cov X

THEOREM 2.2.4 ([17]). h(_; S) is a Steenrod homology theory.

OTHER MODIFICATIONS

OthM ods The construction of the modified Cech homology isalmost what Edwards
and Hastingsdidin[22, Section 8.2] to construct their Steenrod extension “h(X; S).
They used thefunctor V: Top — PRO—S—SETS, X — {V N (i) : U an open cover of X },
where V' N denotes the Vietoris nerve. The rigidity of the Vietoris construction
makes V' land in a pro-category. On page 251 they say that ‘ an interesting problem
is the construction of a nerve that is small like the Cech nerve and rigid like the
Vietorisnerve'.

The modified Cech homology is one possible answer to this question. After all,
the nerves of the underlying open coverings are small. Another somewhat thriftier
way to rigidify the Cech construction is to mimic the construction of Chogoshvili
([20]). This was done in [51] after Edwards and Hastings: the Vietoris nerve is
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again replaced by the Cech nerve, but the category of coveringsis arranged to be
left filtering as follows. For a compact Hausdorff space X, let A be the set of al
finite decompositions of theset X. Anelement £ = (E4, ..., Ey) € A consists of
arbitrary subsets £; C X suchthat £; N E; = () for i # 7, and Ule =X.Ais
ordered by inclusions. Let Cov(X) betheset of pairs (£,U), where€ = {E;} isa
decomposition from A, U/ = {U;} isafinite open covering of X with E; C U; for
all 4 so that this correspondence indices an isomorphism of the nerves N§ = NU.
Fortwo elements: = (£,U), A = (D,V),saythat X > AifE > DandU; C V;
when E; C D;. With this ordering, Cov (X)) isleft filtering. The projection to the
second coordinate gives a system cofinal in Cov® X, and the nerves are defined by
N(E,U) = NU.

2.3. COFINALITY IN CECH THEORY

First, we define some operationsin Cov X.
(2) Given g € Couv X, defineng € Cov X by

= [ 6(2)

ref(z)

Notice that NG > [. Another way to view this construction is as a canonical
rigidification of the classical finite open covering im 3.
(2) Given afinitesubset {3;} C Cov X, defineng; € Cov X by

(NBi)@) = [ Bil2):
i,x€PBi(2)

Notice that NG; > [3; for every index 7, and NB = g N G.
(3) Given afinite subset {3;} C Cov X, define x3; € Cov X by

(xBi)(z m Bi(z

Again, x3; > B; for every index ;.

Choose and fix a (left filtering) subcategory +:C — Cov X closed under the
X -operation. '

It isnecessary to enlarge morphism setsin Cov X . Let Cov'® X bethe category
of setmaps3: X — O(X), theopensubsetsof X, suchthatim 3 isafinite set satis-
fying the two conditions from Definition 2.2.2. Morphisms ¢: 31 — 3, € Cov'S X
are set endomorphisms ¢: X — X with the property that 81 (z) C G2(¢(z)) for all
x € X; they will be called soft refinements. The existence of such arefinement is
denoted by 31 = (2. If ¢ isredized by the identity map, we call ¢ arigid refine-
ment, denoted by 31 > (3. The subcategory of Cov'S X with only rigid morphisms
isprecisely Cov X. '

For each morphism ¢ € Cov'® X, let ©¢ denote the domain and ®¢ the range
of p:6¢ — ©¢. Consider the subcategory M’ of the category of morphisms of
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Cov's X suchthat ¢ € M' iff (1) ©¢ € C, and (2) im(©¢) o ¢ = im(©¢) and
pidr = ¢ € M'iff (1) Ou:6d1 — ¢ € C and (2) Ou: OPp1 — Opz €
Cov X . Notice that p: g1 — ¢ € M’ forces ¢p1 = ¢ as set maps. This comes
from the requirement that () ¢2 o ©u = ®u o ¢1. The same requirement implies
that (3) ©¢1(p1(z)) C @p2(p2(x)) which becomes simply the realization of ©pu.
Let us form a new category M with same elements as in M’ and morphisms
w: 1 — ¢ being pairs (eu, ©p) satisfying (1), (2), and (3). The essenceis that
the weaker property (3) replaces (1) from M’. Consider a so the subcategory P of
the category of morphisms of Cov X with ¢ € P iff ©¢ € C. It can be viewed as
asubcategory of M with the inclusion denoted by i: P — M.

DEFINITION 2.3.1. Let ©: M — P be the functor determined by

- 90(u) = opu,
— ©0(p)(x) = Opup(r)).

Functoriality of the construction follows from property (3) of morphismsin M.

There are two functorial projections, 71: M — C, p — Spu, and 122 M —
Cov X, p — Ou. The same notation will be used for similar 71: P — C, m2: P —
Cov X.

LEMMA 2.3.2. Theinduced map of homotopy limits

+*holim(N_ A KR) — holim(N_ A KR)
2(P) ¢

is a weak homotopy equivalence.
Proof. Since+:C — mo(P) is cofinal in the classical sense, the Modified Cofi-
nality Lemma1.1.6 applies.

PROPOSITION 2.3.3. Supposen,: M — Cov X isanepimorphism. Inparticular,
theinclusion: = £ o 5:C — Cov® X iscofinal. Then theinduced map of homotopy
limits

7*:h(X; KR) = holim(N_ A KR) — holim(N_ A KR)

— —
Cov X C

is a weak homotopy equivalence.

Proof. SinceP isapartially ordered set, we will interpret its elements as pairs:
(0,0) e P CCxCov X iffo € C,o > §.Consider thefunctor ®: P — P givenby
(0,0) — (o, 0). Westart by checkingthat ® isleft cofinal. Solet o € C and suppose
(01,01), (02,02) € P with oy > o0, 02 > o. To prove that @ | o is left filtered,
we need to exhibit (o3, d3) € P with o3 > o and (o3, 03) > (04,9;), % = 1,2. Our
choiceis (o1 x 02,01 X 62). (Noticethat it isnot awaystruethat o1 Moo > §1Nd2.)
The existence of equalizersin ® | o is obvious, so ® | o is left filtering, hence
contractible. The over categories are nonempty since (o, o) > (0,6) € P.
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We would like to claim that 71: M — C and mo: M — Cov X are both left
cofinal. The hypothesis makes every over category associated to 7, nonempty. Itis
also clear that each 72 | 6, § € Cov X, hasequalizers. It will be contractible if M
is shown to be left filtered.

Given ¢;io0; — 0; € M, 1 = 1,2, consider 6, N, € CovX. When X
is connected, (61 N d2)~1(U) is uncountable for U € im (61 N 62), so there is
dax: Tax — 01 N Jr € M, where ¢ is a set automorphism of X. Since z €
(o1 % 02)(x) N (01N 2)(Pax()), Ppax can be chosen with the property pax(z) €
(o1 x 02)(z). Thisgivesz € (o1 X 02) o ¢pax(z). Construct new coverings o =
00 pan € Cov'®X,i =12 Leto =01 X 03 X Tawx, 0 = ) X 0 x (61 N ),
and define ¢:0 — § to be ¢pax. Now we check: (1) o(z) C (01 X 02)(z) =
(0] x 05)(Pax(z)), o(z) C cax(z) C (61 N 02)(Pax(z)). SO p:o = 0. (2)
0> 01x02204,0>01Nd0 > 6 fori=1,2.(3) 6(¢(x)) C (07 x 03)(¢(z)) =
(01 x 02)(x) C oi(z) C 6;i(¢i(z)) for i = 1,2. We get the desired morphisms
¢ = b1, ¢ — ¢2.

Theprojection1: M — C isalso anepimorphism on objects. Similar reasoning
showsthat each over category of 71 isalso left filtering. In fact, it has even simpler
structure: the pair (6 > X,0 > o), where X:z — X for each z € X, isthe
terminal objectin w1l o.

Now 71 and 7, are left cofinal functors. It follows also from the left filtering
property of M and the very functoriality of the ©-construction that ©: M — P is
likewise left cofinal.

Now the map 7* can be embedded as the bottom row of the following commu-
tative diagram:

—

holim(Nm,_ A KR) —— holim(Nr1_ A KR)
M M

* *
*

holim(N_AKR) ——— holim(N_A KR)
— —
Cov X C

The vertical arrows are weak homotopy equivalences by the Cofinality Lemma.
The top arrow can be interpreted as follows. If : M — M is the projection
analogousto P, restricting to ®, noticethat Nmy_ A KR = NmWU_ A KR. So, if
denote N7_ A KR by G(_), thetop arrow is clearly

U*:holimG — holim(G o ¥)
M M

from the commutative square mo o ¥ = 4 o 7.
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Consider the commutative diagram

holim(Nmi_ A KR) 25 holim(Nmi®_ A KR) = holim(N7,%i_ A KR)

— — —
P P P
Ie Ie
\IJ*
holim(Nm_ A KR) holim(Nm¥_ A KR)
M M

Since @ is left cofinal, we are done as soon as both inclusion induced maps
are shown to be weak equivalences. Notice that in the natural transformation
T: Nm0 — Ny induced by the vertex maps ©0¢(z) — ©¢(¢(z)) al of T'p,
¢ € M, are homotopy equivalencesby Quillen’'s Theorem A. Since® o4 = id, we
get the commutative diagram
holim(Nm0_ A KR) - holim(Nr,_ A KR)
— —
M M
i* i*
holim(Nm0i_ A KR) = holim(Nni_ A KR)
— —
P P
The vertical map on the left is the |eft inverse of ©* which is a weak equivalence.
This i* and T, being weak equivalences proves that :* on the right is one, too.
Similarly, the other map i* inthe previous diagramisaweak homotopy equival ence.

Remark 2.3.4. When the inclusion i of C in Cov's X is left cofinal, there is
a reason to expect that 5* is again a weak homotopy equivalence. Just as in the
case of cofinal 4, the evidence comes from the Bousfield-Kan spectral sequence
(Theorem 1.1.5), since the induced homomorphisms
75 imP 7 (N_AKR) — limP 7,(N_ A KR)

— —
Cov X C

of the entriesin the E»>-terms coincide with

(F' 0 5)*: limP 7, (N_AKR) — limP n,(N_A KR).
— —
Cov X F'(C)

Here F': Cov X — Cov X isthe obvious extension of F': Cov X — Cov®X (see
2.2). It follows from the homotopy theoretic interpretation of derived limits ([10,
X1, 7.2]) and the weak equivalence

(F' o 9)*:holim K (my(N_ A KR),n) — holim K (my(N_ A KR), n)
— —
Sovx F'()

that all j;, , areisomorphisms.
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3. TheApproach to Novikov Conjectures

This section restates Theorem 2 from the Introduction in a more precise form.
In particular, the map is defined between the homotopy limits in the statement
which is expected to be aweak homotopy equivalence. Thus Sections 3.1-3.3 are
a sketch of the approach of Carlsson and Pedersen to Novikov conjectures. Then
we describe the version of this approach which we actually usein this paper.

3.1. CONTINUOUS CONTROL AT INFINITY

First, we copy some definitions from [16]. Let F be atopological space, and let
R[E]> denote the free R-module generated by £ x N. The category B(E; R) is
definedto consist of submodules A of R[E]* suchthat denoting ANR[z]*, z € E,
by A, wehave A = ®A,, each A, is afinitely generated free R-module, and
{z : A, # O} islocally finitein E. Morphismsare al R-module homomorphisms.
Notethat aI'-action on X alwaysinducesal'-actionon B(E; R). Also B(E; R) is
asmall additive category.

If X isatopological space, Y asubspace, E = X —Y,U C X isany subset, and
A€ B(E;R),defineA|U by (A|U), = A, ifr e U-Y and0ifz € X-U-Y.
A morphism¢: A — BinB(E; R) iscaled continuously controlled at y € Y if for
every neighborhood U of y in X thereisaneighborhood V' sothat ¢(A|V) C B|U
and (Al X —U)C B|X —-V.

Now let T be an open subset of X and p: T — K be a map with continuous
p|lY NT. A morphism ¢: A — B € B(E; R) isp-controlled at y € Y N T if for
every neighborhood U of p(y) in K thereis aneighborhood V' of y in X so that
$(A]V) C Blp~X(U) and p(A|X — p~Y(U)) C BIX — V.

The category B(X,Y; R) has the same objects as B(E; R) and morphisms
which are continuously controlled at all y € Y. Thecategory B(X, Y, p; R) hasthe
same objects as B(E; R) and morphisms which are continuously controlled at all
y € Y —T andp-controlledat all y € T'NY. Theseare small symmetric monoidal
categories, so there are corresponding nonconnective K -theory spectra defined as
in Section 1.2. We will use the notation K'(_) for K (B(_)).

3.2. PROOF OF THEOREM 1

Hereisthe general scheme of the approach used in [16] to prove Theorem 1 from
the Introduction. Let C’X betheconeon X with X = X x {1}, Y = X — ET,

and p.X x (0,1) — X bethe projection. The map : CX - X collapsing X
induces aI'-equivariant functor

B(CX,CY UX,p,R) = B(SX,%Y,p; R)
which inits turn induces a map of spectra

S =QK(CX,CY UX,p;R) =5 T = QK (XX, 3Y, p; R).
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Next they show that there is a commutative diagram

BTy AKR —~— K(RT)

E E

L

SI‘ ; 7'1"

Recall that the fixed point spectrum of aI'-spectrum A can be defined as A" =
Mapy(S°, A, ). The homotopy fixed point spectrum can be defined analogously:
AP = Mapp(ET,, A, ). The collapse p: ET', — S induces p*: A" — A,
Such maps make the next diagram commute;

ol

st —— 7'
o]

h?

*

ShI‘ Thl"

It is shown in [16] that p*: ST ~ S and #P1: S ~ ThI' putting the two
diagrams together we see that this is enough to make « a split injection. Note
that very little is known about the map 77 — 7", but only being a part of the
commutative diagram is required of it.

3.3. PROOF OF THEOREM 2

Now let us consider the circumstances of Theorem 2 following [17]. Consider
another map « with domain C'X which contracts the subspace C'Y" and produces
the reduced cone C ET' . It induces aI'-equivariant functor

B(CX,CY UX,p,R) &= B(CET, ET; R).

Noticethat each morphism from B(C X, CY UX, p; R) C B(X x R) iscontrolled
at EI'T. This functor induces amap of spectra

S =QK(CX,CY UX,p:R) 25 R = QK(CET™",ET'"; R).
PROPOSITION 3.3.1. k, isaweak homotopy equivalence.

ET'* is metrizable, so, according to Theorem 1.36 of [16], R is a Steenrod
functor, and R" ~ ST — T is again the assembly map. Also R ~ R as
before. Another Steenrod functor is the Cech homology

h(ETT;KR) = holim (NUAKR),
patials
UcCouv ET+

where Cov ET is the category of finite rigid open coverings of ET'*. The nerve
functor N: Cov EI'" — s—SeTs abovelandsin the category of simplicial sets. So
NU N K R aboveisasimplicial spectrum (see Section 2.2).
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The support at infinity of an object A € B(X,Y"; R) isthe set of limit points of
{z : Ay # 0} inY. Thefull subcategory of B(X,Y’; R) of objectswith support at
infinity containedin C' C Y isdenoted by B(X,Y; R)¢. If Uy, Uz are open setsin
ET'* then we get maps induced by inclusions:

K(CEL*Y, ETY; R)y,nv, — K(CETY, EDT; R)y..

In general, there is a functor Inti{ — SPECTRA for any U € Cov ET', where
IntU is the partially ordered set of all multiple intersections of members of ¢/
(indexed by finite subsets of Y).

PROPOSITION 3.3.2. For afixed/ € Cov EI'* the universal excision map
hocolim K (CETY, EI'™; R)ny, — K(CEL'", EI'F; R)

—
Inti/

is a weak equivalence.

The spectrum YR on the right is aI’-spectrum. To rediscover this aspect of the
structure on the left, we can write

holim (hocolimK(CN'EFJr,EI‘ﬂR)nUi) ~ ¥R,
UeCov ETt IntU

where the I'-action on the left-hand side is induced from the obvious action on
Cov ETT. Notice that we have used the fact that Cov ET'" is contractible in
applying Theorem 1.1.4 to holimXR.
In the proper setup (essentially sending each nonempty NU; to apoint) one gets
maps
hocolim K (CET*, ET"; R)y, — |IntU| A KR.

—
IntU

Finally, we get the induced equivariant map of homotopy limits
R — h(ETT; KR).

This map can be viewed as a component of a natural transformation of Steenrod
functors which is an equivalence on points, hence R ~ h(ETT; KR), accord-
ing to Milnor (see [19, Lemma 3.3]. This is enough to conclude that R ~
h(ETt; KR)".

Returning to 7, there is an excision result analogous to Proposition 3.3.2.
In order to produce a natural transformation analogous to =, the covering sets
p(U) C Y must be boundedly saturated. See [17] for the construction of a map

7. T — Y holim(Na A KR)
Pt
ac{a}
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for each I"-closed contractible system of coverings of Y by boundedly saturated
open sets.
Again, this map is I'-equivariant, so the composition induces a map
hD

7" & | Sholim Na A KR
et
ac{a}

Since X is Cech-acyclic, there is a composite weak equivalence

holim (N_AKR) —— holim(N_A KR)

— —
Cov(XUCY) Cov XY

holim (N_AKR) ——s Sholim(N_ A KR)

— —
Cov ET't CovY

Thereisamap
6:holim(N_ A KR) — holim(N_ A KR)
-

P
CovY {a}

induced by the inclusion of categories {a} — CovY’; it makes the ambient

diagram commutative. If ¢ is aweak equivalence then #"!" is a weak equivalence.

This would make « a split injection, since a weak equivalence would again be

factored as the composition of « with another map.

Summary 3.3.3. Given adiscrete group I, the method described here callsfor a
construction of acompact classifying space BI" and an equivariant compactification
X of theuniversal cover ET, i.e., an open denseembedding EI" — X inacompact
Hausdorff space. The space X itself may not be metrizable but it is required to be
acyclic in the sense that its Cech homology is that of a point. Then a convenient
metric must be introduced on ET'. The action may not be small at infinity, but
the choice of a metric determines the family of boundedly saturated subsets of
Y = X — ET. One has to make achoice of aT-invariant collection of coverings
of ¥ by such setswhich preservesthe Cech homotopy type of Y. Furthermore, the
weak homotopy equivalence of Cech homology spectra has to be realized by the
map 6 defined above.

3.4. MODIFICATION

The flexibility of this approach is in the freedom of choice of the metric in X
and the system of special coverings {«a}. It happens to be not enough for making
0 a weak equivalence in a situation like ours when the choice of the metric is
convenient and natural but makes the family of open boundedly saturated setsin
Y = X — X too coarse to preserve the Cech homotopy type.
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DEFINITION 3.4.1. Let C; and C5 betwo closed subsets of Y. The pair (C1, C2)
is called excisive if there is an open subset V' C X such that C,—C,CVad
V N C1 C Ca. For two arbitrary subsets Uy and Uy, the pair (Uy, Uy) is excisive
if every compact subset C' of U; U U, is contained in Cy U C2 where (C1, Cp) is
an excisive pair of closed subsets with C; C U;. A collection of subsetsU; C Y
is called excisive if every pair in the Boolean algebra of sets generated by U; is
excisive.

It is easy to show that Cov X for compact Hausdorff X consists of excisive
coverings. It turns out that this property is sufficient for the excision result like
Proposition 3.3.2 (seethe proof in [17]). Our choicefor {a} will becertain excisive
coveringsby boundedly saturated sets so that the category itself iscontractible. This
makes possible the construction of a map similar to 7, above. Since A(Y'; K R)
is weakly equivalent to the domain of 7,: S — 7 such that ()" is the assembly
map, there must be amap

0:h(Y; KR) =holim(N_ A KR) — holim(N_ A KR)
— —
CovY {a}

which completes the commutative diagram.

To create a natural target for a map from 7 we can ‘saturate’ the open sets
U C Y by associating to U its envelope in a Boolean algebra of boundedly
saturated subsetsof Y thusmapping Cov Y functorially onto the resulting category
{a}. Let us denote this functor by sat: 8 — «(3). Since sat is left cofinal, and
the construction  ~ «(3) above induces a natural transformation of the functors
NBAKR — Na(B)ANK Rfrom Cov Y toS-SPECTRA, we caninduceand compose
the following maps:

6: holim (NBA KR) 2% holim Na(8) A KR << holim(Na A KR).
— — —
pBeCovY BeCovY ac{a}

This is the correct map if we make sure that the analogue of the excision result
from [17] workswith {«}. It isprecisely the property of A € « being excisivethat
we need here. This cannot be always guaranteed. However, one can often make a
more intelligent choice of the Boolean subalgebra of boundedly saturated setsin
the construction of {«}. Taking envelopesin this algebra defines all the analogues
of the maps above with all the same properties.

Now {«} may not be included in Cov Y any longer. Thisis why oneis forced
to consider the more general situation. We will pass to a convenient intermediate
category C of CovY where the open covering sets have particularly nice nature so
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that it is easy to predict the saturation and seethat it does not change the homotopy
type of the nerve. The passageis achieved using the following diagram.

holim (NB A KR) ——s holim Na(8) A KR +—— holim(Na A KR)

— — —
BeCovY BeCovY ac{a}
[ | |
. (sat|C)« . o~ .
holim(N_AKR) —— holimNa(_)AKR <—— holim(N_A KR).
o o oy

Thevertical mapsareinduced by inclusions. Now themap 7 — holim(Na A K R)
can be composed with the vertical map on theright, soin order to split the assembly
map we need »* and (sat|C).. to be weak equivalences.

EXAMPLE 3.4.2. If thereisal’-closed contractible category D of finiterigid open
coverings by boundedly saturated sets then it can be taken to play the role of C. In
this case sat is an identity, so only +* needs to be an equivalence, and we recover
Theorem 2 of Carlsson and Pedersen.

Our own choice of C will be explained in Section 9.1.

4. Malcev Spacesand their Compactification

We start our inductive constructions with a study of simply connected nilpotent
groups. It could culminate in aproof of the Novikov conjecturefor the class NIL of
torsion-freefinitely generated nilpotent groups. It is possible, however, to deal with
these groups using different approaches via reduction ([15, 29, 48]). We actually
compactify a suitable ET', and it is this construction that we are really after. We
also use this format to organize some information needed | ater.

4.1. MALCEV COORDINATES

Let G be areal Lie group, and g be its Lie algebra. There are severa ways to
introduce a local coordinate system in a neighborhood of the identity e € G. If
{X1,...,Xq} isabasisin g, introduce a coordinate system {us, ..., uq} ing by
mapping

d
X = Z’U,ZXZ — (ul,...7ud) € ]Rd.
=1

For the usua norm |X| = (X%, |u;|?)Y? in g, there exists a number ¢ > 0
such that the exponential maps an open norm-metric ball at 0 in g injectively and
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regularly into G. Theimage U, = {exp X : |X| < €} isaneighborhood of e. If
we take

d
Lk (eXpZUiXi> = U
i1

then {z1,...,z4} isaloca canonical coordinate system of the first kind. Recall
that if G is a connected simply connected nilpotent group, the exponential map is
aglobal diffeomorphism, so the coordinate system {z; } isalso global.

A lattice I in a connected Lie group G is a discrete subgroup such that G/I"
has finite volume. Let us begin with

THEOREM 4.1.1 (Malcev [42]). A group is isomorphic to a lattice in a simply
connected nilpotent Lie group if and only if it is finitely generated, nilpotent, and
torsion-free.

Let " be atorsion-free finitely generated nilpotent group which we embed in a
connected simply connected group N produced by Theorem 4.1.1. This N will be
themodel for ET". By Lemmad4 of [42] the subgroup I" hasgenerators{~vi, ..., v},
wherer = dim IV, with the three properties:

1. eechy € T’ canbewritten asy = ' - - -y,
2. eachsubsetT'; = {~;" - -- /" } isanormal subgroup of I, and
3. the quotientsI'; /T"; ;1 areinfinite cyclicforall 1 < i < r.

Let C; = ¢;(t) bethe one-parameter subgroup of NV with¢;(1) = ;, 1 <4 < 7.
Itiseasily seenthat N satisfies analogues of the three properties of I

1. N=Cy---C,, andtherepresentationof g € N asg = g1--- g, g; € C;, IS
unique,

2.if Nyy1 = {e}, N;=C;---Cp, 1 < i < r, then N; are Lie subgroups of N,
dmN;=r—i+1,and N; < Nforlgi<r,

.C; 2Rforadl 1 <igr.

If nisthe Lieagebraof N theneis =log~s,...,e. = log~y, becomesabasis
in n so that each set

n; = {aie; + aip1ei11+ -+ e} Cin

isanideal. So {~y; } produce special canonical coordinatesof thefirst kind according
to Malcev. This system should not be confused with the canonical coordinate
system of the second kind (or Malcev coordinates); it seems that this terminology
first appeared in A. |. Malcev's work on rigidity in nilpotent groups [42]. The
correspondences

log: g — logg,
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r r k
a:ZakekHZak(O,...,l ...,0)
k=1 k=1

define diffeomorphisms between N, n and R” and induce flat metricsin N and n
from the standard Euclidean metricin R”.

4.2. COMPACTIFICATION

LetM; = N/N; = Cy--- C;_1.Sincen; isanideal inn, for any a € N the Poisson
bracket [a, e;] € N; 1. Denote the coordinates of p, g € N by &;, n; respectively,
then the coordinates ¢;(¢) of p - g satisfy

G=&+n +q,...,&% 1,01, ,Mi-1),

where ¢; are polynomials determined by the Campbell-Hausdorff formula. This
showsthat if p € Nj thené; = ... = §_1 = 0and (i, k < j, areindependent of
&, .., & Wecanconcludethat p - g liesinthe hyperplane (Cq, ..., (j—1, %, ..., %)
parallel to N;. So N acts from the right on the set of hyperplanes parallel to V.
Since the formulae are polynomial, the action is continuous. Similar arguments
apply to the left action. One can consider the equivariant enlargement of N by the
equivalence classes of raysin M1 paralel to C;.

Perform this construction inductively for all j = r,..., 2. In order to visualize
and parametrize the resulting compactification v IV of N, it is helpful to embed N
as(—1,1)" C R inthe most obvious fashion so that the orders of the coordinates
coincide and the parallelism relation is preserved. We want to consider a sequence
of certain collapses. The collapses we have in mind are performed in the boundary
of the cube I" and its successive quotients. The first collapse contracts

{(z1,...,zp_1,%) € I" 11 < i < r — Lwithz; = £1} — point.
We give this point the projective coordinates (1, . .., z,_1,b). The set
{(z1,...,2p_1,0) 1 1 <@ < r — Lwithz; = £1}

isthe boundary of 7. Now weinduct on the dimension of the cube. For example,
the collapse at the m-th stage can be described as

{(z1, s Tr oy %, 0y, D) €177 31 i < r — mwith 2; = +1)
— (T2 oy Tpey—1, Dy - - -, D).

The process stops after » — 1 stages when the points (+1,b,...,») do not get
identified. The end result isatopological ball B” with the CW-structure consisting
of two cells of each dimension 0,1, ..., — 1 and one r-dimensional cell and a
continuous composition of collapses p: I" — B". Each lower dimensional cell is
the quotient of the appropriate face in 9I": if the face F’ was defined by z; = +1
thendimp(F) = i.

This discussion proves
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PROPOSITION 4.2.1. The compactification v N is both left and right equivariant
with respect to the multiplication actions of N on itself. The orbits of the two
actionsin TN = vN — N coincide with the cellsin the cellular decomposition of
the boundary.

Remark 4.2.2. Our motive for Proposition 4.2.1 is, of course, that now the
restricted actions of any lattice I' in V extend to 7N. What makes this situation
nontrivial and does not allow one to use the spherical or ideal compactification
of the flat space IV is the fact that the left and right I'-actions on N cannot be by
isometries. Indeed, I would then be acrystallographic group which by atheorem of
Bieberbach would intersect the translation subgroup of Isom(R") in anormal free
Abelian subgroup of finiteindex. Thiswould contradict the possible nontriviality of
the semi-direct product structure on I" (as in the Heisenberg groups, for example).

5. Bounded Saturation in the Boundary Sphere
5.1. GENERAL PROPERTIES OF BOUNDEDLY SATURATED SETS

For any subset K of a metric space (X, d) let K[D] denote the set {z € X :
d(z, K) < D} which we call the D-neighborhood of K.

DEFINITION 5.1.1. Givenametric space (X, d) embedded in atopological space
X asan open dense subset, aset A C Y = X — X is boundedly saturated if for
every closed subset C' of X withC NY C A, the closure of each D- -neighborhood
of C\Y for D > Osatisfies (C\Y)[D]NY C A. Clearly, it is enough to consider
only thoseC withCNnY =C\Y NnY.

Convention. All of the spaceswe consider in this paper have the property that
if  is a cluster point of some sequence {xz;} then there is a subsequence {«; }
o that « is the only cluster point of {x;}. For example, this is satisfied by any
metrizable space. That the spaces from Section ?? and Section A.2 satisfy this
condition follows immediately from the definition of basic neighborhoods. When
we say that asequence {z; } convergesto = and write z = lim{z; }, we understand
that the original sequence has been replaced by a converging subsequence.

LEMMA 5.1.2. Let S be a subset of Y which is not boundedly saturated. Then
there exists a point y € Y'\ S and a sequence {y;} C X converging to y so that
{yi}[D] NS # () for some D > 0.

Proof. By the hypothesis there is aclosed subset K ¢ X with K NY C S
and (K N X)[D]\S # 0 forsome D > 0. Lety € (K N X)[D]\S. Then there
exists a sequence {y;} C X converging to y with d(y;, K N X) < D. Consider
K N {y;}[D]; if this set is bounded then {y;} is contained in the bounded set
(K n{y;}[D])[P] < X which would make y € X. So there is a sequence
{ZZ'} CKnNnXwithz € KN {yl}[D] and IimHoo{zi} eKNY cCsS.
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THEOREM 5.1.3. A subset S C Y is boundedly saturated if for any closed set
CcXwthCnS=0andanyD >0,5nN(CNX)[D]=0.
Proof. Apply Lemma5.1.2 to the contrapositive statement.

Notice that the hypothesis of Theorem 5.1.3 is precisely that the complement
of S'inY isboundedly saturated. So we get

COROLLARY 5.1.4. Thecollection of boundedly saturated subsetsof Y isclosed
with respect to taking complements, finite inter sectionsand unions. In other words,
it isa Boolean algebra of sets.

5.2. THEMETRICIN N

We must begin by identifying the metric in NV with respect to which the bounded
saturation property of setsin 7N will bedefined. It will be not the Euclidean metric
used to construct the boundary but the left invariant Riemannian metric obtained by
introducing a suitable inner product in n. In this situation the diameter of a chosen
fundamental domain F' is bounded by some number D asis also the diameter of
any I'-tranglate of the domain.

DEFINITION 5.2.1. Let (X3, d;) and (X2, d2) be metric spaces. A quasi-isometry
isa(not necessarily continuous) map f: X1 — X for whichthereexist constants A,
e and C suchthat (1) for every 2, € X, thereexistsz1 € X3 with da(f(x1), z2) <
C,and (2) %dl(xl, y1) — € < da(f(x1), f(y1)) < Adi(z1,y1) + e foral zq1, y1 in
X1.

The crucia property of our metric is that the group I" with the word metric is
embedded quasi-isometrically when viewed as a subgroup of V. Our choicefor F
will be the parallelogram spanned by the basis {~; }.

5.3. BOUNDED SATURATION: THE SEARCH

We devel op a systematic method of looking for boundedly saturated subsetsof Y.
Let Z be aleft I'-space with a I'-invariant open dense complete locally compact
(so that bounded closed sets are compact) metric subspace Z° on which I' acts
freely, cocompactly, properly discontinuously by isometries. Then according to
Milnor for zg € Z° the embedding e:y +— + - ¢ of T with the word metric into
7% isaquasi-isometry. In the course of the proof one constructs a compact subset
B C Z%suchthatT'-B = Uyer 7B = Z°. Supposethat in addition thereis aright
I'-action on Z which (1) leaves Z° invariant, (2) commutes with the left action:
(Y1-2) -v2 =71 (2-72) forany z € Z9 and (3) restricts to the right trand ation
actionone(l'), i.e., (y2 - zo) - y1 = (y271) - o for all 1, y2 € I.
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THEOREM 5.3.1. Let L beaboundedly saturated subset of Z — Z9. Then (1) there
isapoint z € L whichisalimit of ¢(T'), and (2) theright orbit - T' ¢ Z — Z°is
contained entirely in L.

Proof. (1) Take an arbitrary 2’ € L, and let {z;} be a sequence of points in
Z0 with lim; o {z;} = 2. Let B C Z° be a ball of radius R centered at z
with the property that T - int B = Z°. So the quasi-isometry constant C' < 2R.
Then {z; }[2R] contains all translates of B which contain some z;, = > 1. A quasi-
isometry inverse to e can be constructed by sending z — «(z) if z € y(2) - B. So
{v(z:) - o} C {zi}[2R]. The sequence {~y(z;)} is unbounded, hencethereis

z = lim;_ oo {7(2:) - w0} C {z}[2R]N (Z — Z°) C L.

(2) Taketheword metric k-ball By, inT" centered at e and act by it on {y(z;) - zo}
fromtheright. If b € By thend(e, b) < k,S0d(xo, zo-b) = d(xo, b-x0) < A\k+€,50
d(v(2i) o, (7(2i) w0)-b) = d(7(zi)-wo,7(2i)- (z0-)) = d(z0, z0-b) < Ak+efor
anyy € I'.So{vy(z)-zo} - Br C {v(zi) -zo}[ \k+e€]. Sincelim;_oo{z;-v} = z-y
by continuity,

z-Bp C {y(z) - zo}[MNe + €| N (Z - Z°) C L.

Letting & increase, weseethat z - ' C L.

This theorem indicates outlines of sets which must be very close to being
boundedly saturated, and in many cases they are such. An example might be our
own application which comes next or the case of a uniform lattice I" acting on
the symmetric space compactified by the ideal boundary. The theorem correctly
suggeststhat each ideal point fixed by the trivial extension of the right action of T'
is also boundedly saturated.

Let us now return to the situation with Z = vN where Z° = N is given
the I'-invariant metric defined above. Theorem 5.3.1 suggests that the cells from
Proposition 4.2.1 might be good candidatesfor boundedly saturated subsetsof V.

5.4. BOUNDED SATURATION: THE PROOF

Now we formally confirm the guess we made in Section 5.3. In the case Z° is a
Lie group which acts on itself by left multiplication and the chosen metric is left
invariant, Theorem 5.3.1 has a much stronger analogue.

THEOREM 5.4.1. Eachright Z%-orbit in Z\ Z° is boundedly saturated.

Proof. Letz € 9Z%and C C Z beaclosed subset such that C N (Z\2°) C z-
Z°. Supposethere existsanumber D with the property that (C' N Z%)[D]\(z-Z°) #
(. Thenthereisasequence {y;} C (C'N Z°)[D] withthelimit lim; o {y;} =y ¢
z - Z9. For each y; choose 2} € {z;} suchthat d(y;, z;) < D. Thenlim;_,o{#} =
lim; ,50{ 2 }. Also there are elements b; € Z° such that z} = y; - b;, they satisfy
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d(1,b;) = d(yi,yi - bi) = d(yi, z}) < D. Thisinfinite sequence has a cluster b in
the D-ball Bp C Z°. From the continuity of the right action we have

z-b=1imioo{zi} - b=lim {2 - b} = limio{yi} =y

which contradicts the assumption.
Since every subset of 7V isright N-invariant, we have

COROLLARY 5.4.2. Each cell in the cellular decompoasition of 7N from Sec-
tion 4.2 is boundedly saturated.

5.5. CUBICAL CELLULAR DECOMPOSITIONS

Let I” = [—1,1]" be the r-dimensional cube embedded in R". It has 2" vertices
indexed by various r-tuples with entries either 1 or —1. Let us denote this set by
Vi—1). We also say that V(_y) is derived from [_;) = {£1} and write this as
Vicy = I(fl). Now define the following subsets of I:

I(O) — {_17 07 1}7 I(l) = —:I.7—%707 %71}7 sy
where
kE k+1 : .
[(7/>:{_17a§77,,1}, ke, —Zlgkgzl’

for i € N. We also get the corresponding derived subsets of 17:

‘/(0)7‘/(1)7 7‘/(1,) = {Ui(sla---asr)} = I&)aa

def (51 s . .
V(8150 s 8p) = (E”Z_Z>’ s EZL, —2Z<3j<21‘

At each stage V; isthe set of vertices of the obvious cellular decomposition of 1™,
where the top dimensional cells are r-dimensional cubes with the j-th coordinate
projection being an interval

{@_@+1
21 2

}CL 1<j <.

Thesecellscan beindexed by then-tuples { (k1, . .., kj, ..., ky) : =20 < kj < 2'},
the coordinates of the lexicographically smallest vertex, 20+D" of the r-tuples at
all.

These decompositions behave well with respect to the sequence of collapses
from Section 4.2 and induce cellular decompositionsof the result from the (—1)-st
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derived decomposition of 1™ and the corresponding CW-structure in B”. We will
refer to this isomorphism of CW-structuresas Y: 0B" — 7N.

There are cubical analogues of links and stars of the usual simplicial notions.
Thus the star of a vertex is the union of al cells which contain the vertex in
the boundary. The open star is the interior of the star. For the i-th derived cubi-
cal decomposition, the open star of the vertex v;(s1, ..., s,) will be denoted by
Star®(v;(s1, - . ., s,)). These sets form the open star covering of I".

By verticesin § N we mean theimage Y p(V(,,) N 0I"). Letv € Tp(Vi,) NOIT)
then

S’(To) tw) Vi) = |J  Star(vn)
un€Vin)
Tp(vn)=v

is an open neighborhood (the open star) of (Yp)~*(v), and, in fact,

def

Starg (v) = Tp(Star(p~ 'Y (v) N Vi,))

is an open neighborhood of v which we call the open star of v. The map Tp is
bijective in the interior of 1", so Star? (v) can be defined by the same formula for
v € Tp(Viny NintI").

6. Borel-Serre Enlargementsand their Compactification
6.1. THE BOREL—SERRE ENLARGEMENT

Let G = G(Q) be asemi-simple algebraic subgroup of GL,,(Q) and I' be an arith-
metic subgroup of G. Itisalatticethereal Liegroup G(RR) and acts (not cocompact-
ly) on the symmetric space of maximal compact subgroups X = G(R)/K so that
X isamodel for ET if I istorsion-free. Borel and Serre ([8]) form a contractible
enlargement X D X which dependsonly on the Q-structure of G so that the action
of I extends to X. The space X is another model for ET but now the action is
cocompact.

We discuss the two cases k = Q and R simultaneously. Denote by Py (G) the
set of parabolic k-subgroupsof G. Let P € P (G), and let Sp denote the maximal
k-split torus of the center Cp of the Levi quotlent Lp,and Ap = Sp( R)?. (An
object associated to the reductive Levi quotient L rather than the group H itself
will usually indicate this by wearing a ‘hat’.) To each x € X is associated the
Cartaninvolution 8,, of G that actstrivially on the corresponding maximal compact
subgroup (see[8]). Thereisaunique,-stablelift ,: Lp( R) — P(R) which gives
the 6, -stablelifting Ap, = TJ;(AP) of the subgroup Ap.

DEFINITION 6.1.1. The geodesic action of EQ on X isgivenbyaoz = a; - z,
wherea, = 7,(a) € Ap, isthelifting of a € Ap.
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Let T¢; beamaximal k-split torus of L¢;/Ce; and A(; be the system of positive
simple roots with respect to 7¢;. Thereis alattice isomorphism © — Pg between
the power set of A and the set of standard parabolic k-subgroups of G.

Now X can be viewed as the total space of a principal Ap-bLAdee under
the geodesic action, and Ap can be openly embedded into (k% )@d(A=O(F)) via
Ap > RAUA-OMP) | et Ap be the ‘comer consisting of Ap together with
positive card(A — ©(P))-tuples where the entry oo is alowed with the obvious
topology making it diffeomorphic to (0, co]®@d(A~0(F)) Now Ap acts on Ap,
and the corner X (P) associated to P is the total space of the associated bundle
X x i Ap with fiber Ap. Denote the common base of these two bundles by

e(P) = Ap\X. Inparticular, e(G°) = X.
DEFINITION 6.1.2. The Borel-Serre enlargement

PePk,(G)

has a natural structure of a manifold with corners in which each corner X (P) =
Lo p e(Q) isan open submanifold with corners. The action of @ (k) on X extends
totheenlargement X . Thefacese(P), P € P, (G), arepermuted under thisaction.

Remark 6.1.3. When B is a Borel R-subgroup of G, we have the Iwasawa
decomposition G(R) = K - Ap - Np(R) (see [46, Theorem 3.9]). Then X =
Ap - Np(R), and the geodesic action of Ap on X coincides with multiplication.
The quotient e(B) can be viewed as the underlying space of the nilpotent group

N5(R).

The main result of Borel and Serre about this construction is that X, is con-
tractible, the action of T" on X, is proper, and the quotient I'\ X, is compact. So,
indeed, X, isthe new ET we can use. The space X to be constructed in Section ??
will compactify Xg.

DEFINITION 6.1.4 (Zucker [59]). Let gp: X — e(P) denote the bundle map.
For any open subset V' C e(P) a cross-section o of gp over V' determines a
translation of V' from the boundary of X into the interior X. For any ¢ € Ap
put Ap(t) = {a € Ap: a* > t*fordl a € A — ©(P)}. For any cross-section
o(V), aset of theform W (V, o, t) = Ap(t) o o(V) is called an open set defined
by geodesic influx from V" into X. R .

Thereisanatural isomorphism p,: Ap(t) x V = W (V, o, t) which extendsto a
diffeomorphism ji,: Ap(t) x V = W (V,a,t). Now W (V, o, t) is aneighborhood
of V in X with jiy({(00,...,00)} x V) = V. This is an open neighborhood
defined by geodesic influx from V' into X .
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EXAMPLE 6.1.5 (X (SL2)). Thehyperbolic plane X can bethought of asthe open
unit disk E in C or as the upper half-plane H. Elements of SL,(Q) act on H from
the left as MoObius transformations. The action extends to the hyperbolic boundary
OH = R U {oc}. The models E and H are related via the biholomorphic Cayley
mapping — E, z — (2 —1)/(z+1). Therational points on the unit circle JE are
theimageof Q C R C JH. The proper Q-parabolic subgroups P arethe stabilizers
of therational pointsp in JE. All of them are Borel subgroups.

For each P the positive reals A € R, act on X by trandations of magnitude
log M along hyperbolic geodesicsin the direction of the cusp p. Thisisthe geodesic
action. Each geodesic -y can be completed to a half-line by adding a limit point
e, in the positive direction of the R, -action which extends trivialy to e,. Now
X(P) = X Ue(P), where e(P) isacopy of R ‘a’ p which parametrizes the
geodesics converging to p, and X = (Jp X (P), where P € Py (SL2).

Given a point and an openinterval y € V' C e(P), the restriction of a cross-
section of the principal bundle X — e(P) to V' determines an open neighborhood
W of y in X(P) defined by geodesic influx from V' into X, i.e., W consists of
al points on geodesics connecting the image of the cross-section to V' including
the latter but not the former. This description makesit clear that X is a Hausdorff
space. Every g € G acts as a Mobius transformation on X and sends a geodesic
converging to arational point to another hyperbolic geodesic. If g € I' C SL»(Q)
then the new geodesic convergesto arational point and thus definesg - y € X.

6.2. COMPACTIFICATION OF ET

The construction performed here can be compared to other compactifications of a
symmetric space X of Martin, Satake and Furstenberg, Karpelevic, and the ideal
compactification. Our X also contains X as an open dense subspace. This givesit
more algebraic flavor than is present in (at least the original formulations of) the
other constructions.

The corner X (P) can be constructed for any parabolic subgroup of G defined
over R (see [8]). This means that instead of X = X we can obtain a larger
space Xp = Jp X (P), where P ranges over all proper R-parabolic subgroups. In
general, there may appear complicationsin theway X, and X, fit together arising,
for example, from the fact that the Q-rank of G may not be equal to the R-rank.
Restricting our attention to the case of rankgeG = 1 (which we assume from now
on) avoids such phenomena.

For an arithmetic subgroup I' of G(Q) and any Borel subgroup B € By,
I'p = I'N B(Q) isthe stabilizer of e(B). If wewrite the Langlands decomposition
as B(R) = M(R) - A- N(R) thenT'p C M(R) - N(R). Sincein our case I is
torsion-free, 'y = 'y =T N N(Q).

PROPOSITION 6.1.6. "y is a uniform nilpotent lattice in V.



348 BORIS GOLDFARB

Thisis precisely the property called admissibility in [30], and our I" are proved
to be aways admissible in [30, Theorem 5.3].

We start by compactifying each e(B), B € Bg, I' N B(R)-equivariantly, then
provide the new points with certain neighborhoods which will form a part of the
basisfor the topology on X . Recall Remark 6.1.3. Thelattice' N NV actson N via
left multiplication. Werefer to [33, Lemma (7.8)] and the preceeding discussion for
the verification that thisis, in fact, the action of I' 5 on the stratum e(B). Thusthe
material of Section 4 becomes relevant, and e(Byp) corresponding to the standard
Borel subgroup By may, indeed, be compactified I g,-equivariantly by 7.V

The conjugation action of G(R) permutesthe Borel-Serre stratae(B), so G(R)
also acts on the digjoint union of the compactificationsv(B) = v(e(B)), i.e., on

5X % 1(Bo)x sy G(R).

Warning. 6 X comeswith the identification topology which we are going to use
in the ensuing construction, but it will not be the subspace topology induced from
the resulting topology on X .

DEFINITION 6.1.7. X = Xz UdX = X U§X.
The topology is introduced ala Bourbaki. We are referring to

PROPOSITION 6.1.8 ([9, Proposition 1.2.2]). Let X bea set. If toeachz € X
there corresponds a set V(x) of subsets of X such that (1) every subset of X
containing one from N (z) itself belongs to (), (2) a finite intersection of sets
from A/ (z) belongsto NV (z), (3) the element = belongs to every set in N'(z), (4)
for any N € N (z) thereis W € N (z) suchthat N € N (y) for everyy € W,
then thereis a unique topology on X such that, for each z € X, N (z) isthe set of
neighborhoods of .

By a neighborhood of a subset A in atopological space they understand any
subset which contains an open set containing A.

The space Xy, is the R-Borel-Serre construct and has the topology in which
each corner X (B) isopen. Fory € Xy let N'(y) = {O C X : O containsan open
neighborhood of  in X3 }.

Notation. Given an open subset U C v(B), let O(U) = q5*(V), thetotal space
of the restriction to V' = U N e(B) of the trivial bundle ¢z over e(B) with fiber
Ap. If U isany open subset of §.X, let

oW)= |J oW ne)).
BeP:

In either case define C(U) = {2z € Xy : thereisO € N (z) suchthaa O N X C

OU)} U{z € 6X\Xg : there is an open U’ C §X such that z € U’ and
oU") c OU)}.
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Now for y € 6X\Xg, let N'(y) = {O C X : thereisan open set U C 6X
containing y with C(U) C O}. This defines a system of neighborhoods N (y) for
anyy € X.Forasubset S ¢ X let N'(S) = {0 € X : O € N(y) for every
y € S} andcal S openif S € N(S). Thefollowing lemmais elementary.

LEMMA 6.1.9. (1) If B € Br and U C v(B) isan open subset then C(U') is open
inX.(2) If B € Bg,and Uy, U, C v(B) areopen subsets, then C(U1) N C(Uz) =
C(Ul N Uz).

THEOREM 6.1.10. The open subsets of X form a well-defined topology in X .

Proof. We need to check that thefour characteristic propertiesfrom Proposition
6.1.8aresatisfied by N (z), z € X. (1) and(3) areclear from definitions. (2) follows
fromLemma6.1.9 (2). Givenany N € N (z), z € 7(B), thereisU € v(B) such
thatC(U) C N.TakeW = C(U).ByLemma6.1.9(1), N € N (y)foranyy € W.
Thus (4) is also satisfied.

Remark 6.1.11. If T" isan arithmetic subgroup of G(Q), itisimmediate that this
compactification is I'-equivariant. In fact, the action of G(R) on X extendsto X
which isin contrast to the fact that this action does not extend to X

EXAMPLE 6.1.12 (Arithmetic Fuchsian Groups). Consider anarbitrary proper par-
abolic R-subgroup P of G = SL,. It actson X just asthe Q-subgroups stabilizing
apoint p(P) in JE, i.e,, P permutes geodesics abutting to p(P). Attach aline
at p(P) parametrizing these geodesics; this is the general construction of corners
X (P) from ([8, Section 5]) in the case k = R. If P fixes arational point then
X(P) = Xgy. Complete each stratum: now v(P) = e(P) U {—o0,+oo}. The
resulting set is X in which every X (P) is declared to be open. So typical open
neighborhoodsof z € e(P) in X arethe open neighborhoods of z in X (P). Given
aline e(P) and one of its endpoints y, a typical open neighborhood of y consists
of

— y itself and an openray in e(P) asymptotic to y,

— an open (Euclidean) set U in E bounded by the hyperbolic geodesic v abutting
to p(P) representing the origin of theray in e(P)—the one which isthe union
of geodesics representing other points of the ray,

— pointsin variouse(B), B € Py, such that p(B) ison thearc in OE connecting
p(P) with p(R), the opposite end of -y, which are represented by geodesics
with asubray inside U,

— each endpoint of the corresponding v(B) if B # P, R, and

— the endpoint of v(R) which is the limit of aray in e(R) contained in the set
from (3).

With the topology on X generated as above, the subspace X C X has the
hyperbolic metric topology, and 6 X = X — X issimply S* x I with an analogue



350 BORIS GOLDFARB

of the lexicographic order topology ([52, Exercise48]). In terms of the description
of thelexicographic ordering onthe unit square I x I givenin[52], theanaloguewe
refer to is the quotient topology on S* x I associated to the obviousidentification
(0,y) ~ (1,y) foral y € I. In particular, § X is compact but not separable and,
therefore, not metrizable.

7. Topological Propertiesof X
7.1. SOME GEOMETRIC PROPERTIES OF X

The space X is not metrizable and, therefore, has no geometry in the usual sense.
On the other hand, the geometry of the spherical compactification ¢X with the
ideal boundary 9.X iswell understood (see[4]). Thegoal of this sectionisto relate
Cov® X to Cov®(eX).

The first two lemmas are proved in the following generdlity: let G be a semi-
simple linear algebraic Q-group with equal Q- and R-ranks.

LEMMA 7.1.1. Let gg: X — e(B) be the Borel-Serre bundle associated to a
minimal parabolic subgroup B € B (G). Consider a compact set C' C e(B) and
therestriction of ¢p to C with the total space ¢p|C'. Then the closure of ¢p|C' in
e X consistsof theunion of ¢p|C with apartmentsat infinity 0A, where A = qgl(c)
for somec € C.

Proof. Lety € cl(¢p|C) and {y;} be asequence of pointsin gg|C converging
toy. If y € X theny € ¢p|C by compactnessof C'.

Consider y € cl(gp|C)\ X, pick asection o of ¢z, and introduce the following
notation: y; = o(qp(yi)), z = liMi,0 ¢B(Yyi), 2 = o(z). Let v be the unique unit
speed geodesic ray from z asymptotic to y, -y; be the unit speed geodesic from z to
yi, and p; be the geodesic from ¢; to y;.

If \; isasequence of geodesicraysin X, it issaid to convergeto ageodesic ray
M if A(t) = lim;_, o Ai(¢) for every ¢ € [0, 00). The geodesic segmentsy; (or their
extensions) do convergeto -y (see[4], 3.2), i.e., lim;_, d(7;(t),(¢t)) = 0. On the
other hand, we can also claim that

lim d(p;(t),7:(t)) = 0.

1— 00

Proof of the claim. Let p; and ~;” be the unit speed geodesics from y; to
yi and z respectively, then p;(t) = p; (d(yi, pi(?))), 7i(t) = v; (d(yi, () =
i (d(yi, pi(t)) + ), 6; € R. Let M = min{d(y;, %), d(yi, Z) }. Without a loss
of generality we can assume that M = d(y;,7;) so that §; > 0. The geo-
desic bicombing of X is bounded, so there are constants k; and k» such that
d(p; (s),7; (s)) < kid(ys,z) + ko forany 0 < s < M. In fact, we can do better
and use k1 = 1, k; = 0. Indeed, recall Toponogov's definition of nonpositive
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curvature ([4]). Now

d(pi(t),yi(t + 07)) (%57 (M))
(y;77z_(M),) < d(y;vzl) = d(yi,Z),

where the primes denote the corresponding points in the comparison triangles. By
the triangle inequality,

d(vi(t +0i),7i(1)) = 18] = |d(yi, i) — d(yi, 2)| < d(yi, 2),

thus d(p;(t),v:(t)) < 2d(%, z), and

<d
<d

1im d(p;(t),7i(t)) < 2 lim d(y;, 2) = 0.
1—> 00 1—> 00
This proves the claim.

We finally get lim;_, ., d(p;(t),y(t)) = 0. Since the fibers ¢5(c), ¢ € C, are
totally geodesic, g5(pi(t)) = qi(y;) foralltimest. Sogp(y(t)) = im0 qp(yi) =
2. We concludethat y(t) € g5 (2) for al t, thusy € dgz*(2), z € C.

Thereverseinclusion of the setsis obvious.

Recall that ¢(B) = Np (Remark 6.1.3). Derived cubical cellular decomposi-
tions of 1" with vertices V/{,,) induce cellular decompositions and open coverings
of vN. The open coverings are composed of the images of open stars of vertex
inversesin I". Themap wehaveinmindis Tp: I" — N, where T isthe extension
of the map from Section 5.5. Wefix the choice of T p madefor B from now on. The
verticesinv N are defined to bethe set Tp(V/,,)). The starsof 7V in this family of
cellular decompositions form a nested sequence of regular neighborhoods of the
boundary denoted by

Reg, (B) = Reg,(rNp) & ) sad(v).

'UETp(‘/(n))
vETNB

Recall also the notion of geodesic influx neighborhood W (V, o, t) from Definition
6.1.4. Given a point 7o € X, there is a horocycle N - o passing through zo
parametrizing the orbits of Ap. This defines a section o:e(B) — X of g with
(0 0qp)(z0) = xo. Let usdenote the corresponding geodesic influx neighborhood
W (e(B),,0) by Wg(zo).

LEMMA 7.1.2. Given any minimal parabolic subgroup B € Br(G) and an open
neighborhood U of v(B) in X, then U contains the restriction to X of an open
neighborhood V' (B) ine X of the corresponding Weyl chamber at infinity W (B) C
0X.
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Proof. Since ¢(B) is compact, there is a neighborhood Wy (z) of e(B) con-
tained in U. For the same reason there is an integer n large enough so that
C(Stary (v)) C U for every vertex v € Tp(V,) N 0I"). Thus

7(B) c | Jc(Stard(v)) = C(Reg, (B)) C U.

It is obvious directly from the definition that C(Stary, (v)) is an open neighborhood
of Star? (v) N 7(B). We obtain a new open neighborhood of v(B) in X by taking
the union Wg(zo) U C(Reg,, (B)) C U which we denote by V,,(B, zo) or ssimply
Vn(B) when the choice of Wg(z0) IS not important.

Notice that O(Reg,,(B)) = C(Reg,,(B)) N X isthe union of al chambers and
walsin ¢ (2), z € Reg, (B) N e(B), based at o(z). Similarly, Wz (o) is the
union of al chambers based at o(z), z € e(B), and asymptotic to W (B) C
0X. So X\V,(B) consists of chambers and walls based at o(z) in the flats
q5-(2), z € v(B)\Reg,(B), and not asymptotic to W (B) C 0X. This is
qp-(v(B)\Reg, (B))\Wg(z0). By Lemma 7.1.1 the closure of this set in eX
consists of Weyl chambers and walls in the flats g3 (2), z € v(B)\Reg, (B), and
the corresponding apartments in 09X excluding W (B) and the chambers asymp-
totic to it. So, the open complement V(B) = V,,(B) of this set contains W (B).
Finaly, V,(B)NX =V,(B)nX CU.

LEMMA 7.1.3. Assume that rankeG = 1. Consider a subset of X U 0X of the
form V,(B). Then V,,(B) N 90X consists of chambers at infinity W (P) such that
v(P) hasa neighborhood N c X whoserestriction N N X C O(Reg,(B)).

Proof. First, let P € By havethe property that W (P) € V,,(B) N 0X. In this
case the claim reduces to finding some Reg,, () so that

O(Reg,,(P)) = C(Reg,,(P)) N X C O(Reg,(B)).

This follows from the fact that the map of power sets ¢z p: P(e(B)) — P(e(P))
defined by ¢p.p(S) = qp(qlzl(S)) is relatively proper (the image of a compact
set is relatively compact). Let K C e(B) be a compact subset and {y;} C e(P)
a sequence such that L = lim;,oo{y;} € 7(P) and ¢p'(1:)\O(CK) # 0 for
al y;. The endpoints of each geodesic ¢5(y;) are W (P) and another point z; €
CV,(B) C 0X.SinceV,(B)isopen, z = lim;_,{z} € CV,(B). Thisrepresents
L as the class of the geodesic asymptotic to z and W (P) which contradicts the
hypothesis. Theunion of O(Reg,,, (P)) and asuitable geodesicinflux neighborhood
of e(P) isarequired neighborhood N of v(P).

Now suppose that v(P) has a neighborhood N described in the statement.
Then there is a section o of gp such that all Weyl chambers based at o (), £ €
e(P), and asymptotic to W (P) are contained in the neighborhood, and, therefore,
miss X'\V,,(B) completely. It is now clear that no Weyl chamber in X\V,,(B) is
asymptoticto W (P), so W (P) C O(Reg,,(B)).
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COROLLARY 7.1.4. Using the notation above, if the parabolic subgroup P € Py
has the property W (P) C V,,(B) thenv(P) C V,,(B).

Proof. This is a corollary of the proof above. One can see immediately that
e(P) C V,(B).Fory € 7(P),y € C(Reg,,(P)) whichisof the form constructed
in Lemma 7.1.3. In other words, for P’ € Py with W(P') C V,,(P) we get
O(Reg,(P')) C O(Reg,,(P)). So C(Reg,,(P)) C C(Reg,(B)), hence 7(P) C
Vn(B), and, finaly, v(P) C V,(B).

LEMMA 7.15. If {Up}, P € Pg, isacollection of open setsin X with each Up
containing ¢(P) whose restrictions cover X — X, then the sets V (Up) can be
chosen so that they cover 0.X.

Proof. Clear, since every point of 0X belongsto awell defined Weyl chamber.

7.2. THE HAUSDORFF PROPERTY

The subspace X C X isopen, soit sufficesto check the Hausdorff property for z,
y € 60X\ Xg. If 2, y € v(B) for some B € By then they can be separated by open
neighborhoods U,,, U, C v(B) with O(U,) N O(U,) = 0 which get completed
to open naghborhoods C(Uz)NC(Uy) = 0. Sosuppose z € v(B1), y € v(Ba),

B;1 # B;. The points W (Bz) and W(Bz) are limit points of a unique apartment
which projects to =/ € e(B1), vy’ € e(B2). Choose n € N large enough so that
z' ¢ Reg, (B1),thenC(Reg, (B1)) Nv(B2) = (). Now choosen € N large enough
so that Reg,,(B2) N ¢B,(O(Reg, (B1)) = 0. The existence of such m follows
from the same argument as in the proof of Lemma 7.1.3. Now C(Reg,,(B1)) and
C(Reg,,(B2)) aredisjoint open neighborhoods of = and y respectively.

Remark 7.2.1. Let Xp(k) = X U Upep, e(B) where al of X(B) are open.
The construction from Section ?? can be performed with the Borel subgroupsin
any split rank linear algebraic group. The strata e(B) get compactified to v(B) =
vNp C 0pX. DenoteXb( R) U opX by Xb

It is not true that sz is always Hausdorff. This has to do with rank, and the
simplest example is Xp(SL3). Here each maximal 2-dimensional flat consists of
six chambers and six walls. Pick two walls which are in opposition: they lie on
a geodesic y through the base point and determine two walls W (Py), W (P,) a
infinity. If 21 = ¢p,(y) € e(P1) then let 2§ € R, Pi(R) be the first coordinate
projection of e(P1) = R, P1(R) x €(P1), where R,, denotes the unipotent radical,
and e(Py) is the reductive Borel—Serre stratum (see [58, 59] or [33, Section 7).
Thepoint z§ € R, P>(R) isdefined similarly. The two points are the limits of «y in
X. Itturns out that the pointsof {24} x (P1) and {24} x &(P,) match bijectively
in this manner.

By [8, Sections 2.8, 3.10, 5.2, 7.2(iii)], for any P € Py the principal R, P(R)-
fibration ;. p extendstoaprincipal fibration zip g: e(P)p, — €(P)y. Sincee(P), =
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Xg for X = SLy(R)/SO,(R), each level gets compactified asin Example 6.1.12.
In particular, {z'} x e(F;), i = 1,2, embed in the closures of the corresponding
strata. It is now easy to see that the bijective correspondence described above
extends to these enlargements and to find points y; € {z}} x (e(F;) — eé(F;)) so
that any two neighborhoods of y; and v in the respective enlargements contain
some points z; € {z'} x €(F;) which are matched. Equivalently, y1 and y, are
inseparablein X;,(SL3).

In order to construct the correct X (SL3) and introduce a compact Hausdorff
topology, one might want to compare X with the Satake compactification of X.
See Section ?? for an illustration. Complete details are contained in [32].

7.3. COMPACTNESS

Given any open subset U of X containing X — X, since such a subset would
contain v(P) for every P € Py, its restriction to X would also contain an open
neighborhood in X U 90X of the corresponding Weyl chamber at infinity W (P)
according to Lemma7.1.2. Asbefore, this saysthat U N X istherestriction of an
open subset of X U 9X containing 0.X. By compactness of 90X, U N X contains
acollaron 0X. R

Now given any open covering{ of X, let {Uyp,..., Uk, p} C U beany finite
subcollection which coversthe compact subspace v (P) for P € Pg. Thesetsv(P)
cover X — X. Since the unions Up = |, U, p contain the corresponding v (P)
individually, they together cover X — X. We now apply Lemma 7.1.2 to find open
neighborhoods Y (P) of ¢(P) inside Up and open neighborhoods V' () of W (P)
in eX which have Y(P) N X = V(P)N X. By Lemma 7.1.5 the sets V(P),
P € Py, cover 0X.

Choose afinite subcollection { P}, P; € Pg,i = 1,...,m, suchthat {V(F;)}
still cover 0.X. The first paragraph shows that their union must contain a collar
on 0X. The complement of this collar in X U 0X is closed and contained in X,
henceiscompact. LetU,,, 11, ..., U, beafinite collection of setsfrom ¢/ such that
UntaN X,...,U, N X cover the complement of the collar. Each Weyl chamber
W (P) iscontained in at least one set V' (F;). By Lemma 7.1.3 the corresponding
set Up, in X contains e(P). This meansthat {Up.},i = 1,...,m, cover X — X.
Since(J;(Up,NX) D U;(V(P)NX),thesetsUp,, ..., Up,.,Un+1, ..., U, cover
X. In other words,

{Ul,P;U R Ukpl,P17 ) Ul,Pm7 ey Ukpm,va Um+17 ) Un}
is afinite subcovering of U.
COROLLARY 7.3.1. The space X isa compactification of X, i.e.,, a compact

Hausdorff space containing X as an open dense subset. In fact, the combination
of the Hausdorff property and compactness makes X normal.
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7.4. CECH-ACYCLICITY

Since the continuous map f: X — X defined by

T if £ e X,
x'—>{W(P) if x €e(P),

has contractibleimage and point inverses, it would be desirable to have an analogue
of the Vietoris—Begle theorem for the modified Cech theory. We prove a weaker
but sufficient

THEOREM 7.4.1. If f: X — Y isa surjective continuous map with f~1(y) con-
tractiblefor eachy € Y, and Y is Chogoshvili-acyclic for any Abelian coefficient
group, then

fih(X;KR) — h(Y;KR)
is a weak homotopy equivalence. So both X and Y are éech—acyclic.

The proof is an amalgam of results from [5, 6, 20, 36, 51]. The construction
of Chogoshvili is the one we have sketched in Section ?7?; it extends the Steenrod
homology theory on the subcategory of compacta. Berikashvili ([5, Theorem 2])
proved the uniqueness of such an extension

hy(_,_): CoMPHAUS?> — ABGROUPS

when it satisfies the following three axioms.

AxiomA. If (X, K) is acompact Hausdorff pair then the projection (X, K) —
(X/K, point) induces an isomorphism h(X, K) — h(X/K, point).

Axiom B. For the diagram {(S7,, point), m,s }, where S7; is afinite bouquet of
n-dimensional spheresand 7,5 S;; — S} isamapping sending each sphere of the
bouguet either to the distinguished point or homeomorphically onto aspherein the
target, there are isomorphisms

h; (Iim{(Sg,point),wa/;}> = lim {h;(Sy, point), 7,3}
— —

« o

Let€ = (Ey, ..., E;) € Abeafinite decomposition asin Section ??. Let N¢

denote the nerve of the finite closed covering £ = (Ey, ..., E;). Then
N ®im Ne, Ny (x) %€ lim 2,
— —
g€A g€A

where KP denotesthe p-th skeleton of the simplicial complex K. Thereisaunique
continuous map

wN(X) — X
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determined by the condition that if y = {ys} € N(X), y¢ € Ng, and oy ¢ =
(E1, ..., E;) isthe minimal simplex in Ng containing ye, the carrier of y¢, then
w(y) € E1N---NE;. Indeed, N, , E1N---N E; # 0, and uniqueness follows
from the Hausdorff property of X.
Axiom C. The natural homomorphism

colimh, (N, (X)) — hy(X)

—

p>0
induced by w is an isomorphism.

In [36] Inassaridze derives the Vietoris-Begle theorem for such a theory with
coefficientsin the category of Abelian groups. His theorem requires point inverses
to be homologically trivial. Applying the theorem to the map f: X — Y, we get
an isomorphism

H.(f;A):H.(X;A) =2 H,(Y; A)

of Chogoshvili homology groupsforany A € ABGRouPS. So X itself isChogoshvili-
acyclic for any Abelian group of coefficients.

Now the main tool of Berikashvili in [5, 6] isthe following characterization ([6,
Theorems 3.1, 3.4]).

THEOREM 7.4.2. A generalized homology theory &, on the category of compact
Hausdor ff spacessatisfiesAxioms A, B, and C, if and only if there existsa functorial
convergent Atiyah—Hirzebruch spectral sequencewith

Ej = Hy(X; ky(point)) = kpq(X).

When X isChogoshvili-acyclicfor all Abelian coefficient groups, this sequence
collapses at the E,-term with just the right entries in the 0-th column to make X
k-acyclic. Axiom A is satisfied by any Steenrod theory. To complete the proof
of Cech-acyclicity of X, it suffices to verify that Axioms B and C hold for the
modified Cech theory with coefficient spectrum K (R) (cf. [51]).

LEMMA 7.4.3. Let { X,, } bean inverse system of compact Hausdor ff spaces with
X =lim, X,. Thenthereis a spectral sequencewith

2 ; i .
B, = limP hy(Xoi KR)

«Q

convergingto i, (X; KR).
Proof. Thisisidentical to the proof of Theorem 8.5.1 from [22]. Observe that

N(Cov®*X) = {N(Cov®X,)} € PRO-S-SETS.

The lemma follows from the Bousfield—Kan spectral sequence (Theorem 1.1.5)
appliedto { N(Cov® X,,) } viewed as an object in the category PRO-(PRO-S-SETS).
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Apply the lemmato the system of wedges of spheres and notice that
limP he(S!;KR)=0 forp>0

@

by Corollary 1.2 of [6] or [37]. Since aso
lim® h,(S%;, KR) = lim hy(S"; KR),
-

—
« «

the isomorphism between the E2- and E*°-terms is the one required in Axiom B.

LEMMA 7.4.4. For eachinteger w < O thereis a spectrum K (R) with

{m(KwR):O for i < w,

K7 (R) = KZ(R) = K;i(R) for i> w.

7

Proof. KPR = Q™ %Spt(iC_(R)). See Section 1.2 for notation.

Apply Lemma7.4.3to each N,(X), s > 0, and homology theory h,(_; K R),
getting spectral sequenceswith
EZ = limP hy(NE K¥R).
) —
geA

Now, for any finite complex C'
hn(CP; K®R) = h, (C; K¥R)

for p > n — w. So each entry in the E2-term associated with N,(X) with ¢-
coordinate < s + w coincideswith the corresponding entry in the E2-term associ-
ated with N (X). Passing to the limit as s — oo we see that the natural map

t(X):colimh, (N, (X); K R) — h(N(X); K" R)
>0
is an isomorphism.
Notice that the natural homomorphism from Axiom C factors as

colimiv, (N,(X); K= R) "X b (N(X); K"R) 5 ho(X; K7 R).
—
p=0

It remains to show that w, isan isomorphism.
Recall a construction due to Eldon Dyer. Let i/ € CovX and set

Ly(X)={(y,z) e NUx X :zec(UnN---NU)},

whereo, = (Uy, ..., Uy;) isthecarrier of y. Thisisaclosed subspaceof NI/ x X.
The second coordinate projection wg: Ly (X) — X is a homotopy eguivalence
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because X isnormal. The homotopy inverseisyy,: X — Ly/(X), x — (gu(x), z),
where g;.: X — NU is the canonical map associated to a partition of unity. Let
7 Ly(X) — Ly(X) be the restriction of the map m), x id: Ny(X) x X —
Ny(X) x X. Then

N(X) = lim {Ly(X),m)},
UeCov® X

wy o, = wy, andthemap N(X) — X induced by {wy,} coincideswith w. Since
each wy, is ahomatopy equivalence,

w*:h( lim LM(X);KWR> — h(X; K“R)
—
UeCov® X

isanisomorphism (e.g., once again using Lemma7.4.3). Passing to another (homo-
topy) colimit, one getstheresult for K (R) instead of the semi-connective K= (R).
This verifies Axiom C.

7.5. REMARKS ABOUT TOPOLOGICAL PROPERTIES

Remark 7.5.1. X is nonmetrizable for the same reasons as E — E in Example
6.1.12 with the lexicographic order topology: both are compact but not separable.
Note also that the action of I" at infinity is large, and although X' happens to be
Cech-acyclic, it is unlikely to be contractible. These three features of X make
Theorem 1 inapplicable.

Remark 7.5.2. Thisis related to the previous remark. Observe that in the case
G = SL, (discussed in detail in Example 6.1.12) the identification map X — X+
can be factored through another compactification of X where all irrational strata
are collapsedto points. All of our arguments can be donefor that space. The matters
can be smplified even further by noticing that the action of I" on the resulting space
is small at infinity, and the space)A( itself is metrizable. Note, however, that this
cannot be arranged in our more general situation because the action of I'z, on
v(By) isaready not small.

8. Bounded Saturation in the Boundary
8.1. THEMETRICIN X

The spacef( contains X asan opendenseI'-subset, inparticular I actscontinuously
on X as before. The metric that we use in X is a transported I'-invariant metric.
It can be obtained by first introducing any bounded metric in the compact X/T
and then taking the metric in X to be the induced path metric where the measured
path-lengths are the lengths of the images in X/I" under the covering projection.
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In this situation, the diameter of a chosen fundamental domain A is bounded by
some number D as is aso the diameter of any I'-trandate of the domain. Notice
that this metric is very different from the one Borel and Serre used in [8, Sect. 8.3].
The general metrization theorems of Palais they used produce metrics which are
bounded at infinity.

The crucial property of our metric is that by choosing a base point zg in A and
taking its orbit under the I'-action we can embed the group I" with the word metric
quasi-isometrically in X. In this sense, the metric is similar to the left invariant
metric in anilpotent Lie group used in Section 5.2.

8.2. FUNDAMENTAL DOMAINS AND SETS

If X isthe symmetric space G/K for alinear semi-simple Lie group G, m: G —
G/K isthe natural projection, and I' < G is a discrete subgroup, G and I' act
on X from the left. Reembed I" in G by conjugating by an element of K so that
m(e) # v -7(e) forany v € I', v # e. Recall that X has aleft G-invariant metric
ds?, and there is the corresponding distance function d: X? — R-¢. Define

E={zre X dn(e),y -z) >d(n(e),z), vy}
This set is called the Poincaré fundamental domain.

DEFINITION 8.2.1. Let G be a reductive Q-group, and let ' C G(Q) be an
arithmetic subgroup. Then Q@ C G(R) isafundamental set for I' if (1) K - Q@ = Q
for a suitable maximal compact subgroup K C G(R), (2) ' - Q@ = G(R), (3)
Q710N (2G(z)y) isfinitefor al z, y in G(Q).

Remark 8.2.2. Property (1) implies that theimage of Q2 in X = G(R)/K isa
fundamental set for the induced action of I on X. If €2 is a fundamental set for
I' = G(z) then the property (3) allows to construct a fundamental set for any
subgroup I commensurablewith I" by taking €' = [, ¢y, o - (2, where X isaset of
representatives of IV /(I' N [''). The classical constructions of Siegel fundamental
sets can be seenin [46, Sects 4.2, 4.3].

Let Py bethe standard minimal parabolic Q-subgroup of G, let A bethe maximal
Q-split torus of G contained in Py, and K be the maximal compact subgroup in
G(R) whose Lie algebra is orthogonal (relative to the Killing form) to the Lie
algebraof A(R). Let

Ay ={a € AR : a(a) <t,Ya € A}

Recal that Py = Zg(A) - R, (Po). Furthermore, Zg(A) ~ A - F where F' is
the largest connected Q-anisotropic Q-subgroup of Z;(A). From the lwasawa
decomposition, G(R) = K - P(R). This yields the following decomposition:
G(R) = K - A(R)° - F(R) - R, Po(R).
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DEFINITION 8.2.3. A Segel setin G(R) isaset of the form
z]t,n,w ZK'At'U'W,
where n and w are compact subsets of F'(R) and R, Po(RR) respectively.

THEOREM 8.2.4 (Borel). Therearea Segel set ¥ = %, , and afinite set C' C
G(Q) suchthat 2 = C - ¥ isafundamental set for I'.

The results of Garland and Raghunathan from [30] determine the form of the
Poincaréfundamental domainswhichlook likethe setsdescribedin Theorem 8.2.4.
They work with nonuniform lattices T" in arank one linear algebraic semi-simple
Liegroup G.

Fix some lwasawa decomposition G = K AgNy. Thereis a parabolic subgroup
Py < G with Langlands decomposition Py = MyAgNp.

THEOREM 8.2.5 (Selberg, Garland—Raghunathan).

1. The total number of geodesic rays r(t), ¢ € Rso, such that r(0) = =(e),
r(Rso) C &, isfinite. Denote the minimal such number by M and choose £
with this number of cusps.

2. 1f ry = limy_s00 mi(t) € 0X,1< i < M, letT; = stab(r;). Then & = UM, &,
where & isa compact set, and thereis g > 0 such that

ri(Ryo) C &, ENEj=0for 0# i #j #0, & = g%,

whereg; € G, g; ¢ I'\e,and 3; = {x € X : z = r(Ry;) for geodesic rays
riy — W(P),y € w;, w; C X arecompact}.

3. Onehasg;I';g; 1« MoNo, where Ny isthe maximal nilpotent subgroup of the
stabilizer of the standard cusp, and w; is the closure of a fundamental domain
for g;T';g; " inthe horocycle No - (1).

When T" is an arithmetic subgroup, the cusps r; are rationd, i.e., g; € G(Q).
If T is torsion-free then ¢;T;9;* acts fredly in N - (). Also, there isw = wj,
1<i< M. Consder TV = (T, g1,...,9u) < G(Q), the subgroup generated
by the listed elements. This subgroup has afundamental domain with unique cusp
whichiscontainedinaSiegel set ¥, ,, w being the closure of afundamental domain
of "N Noin Np(R) = e(P). SOA C qlsol(w) and (I'"/T" N Np) - cl(A) = qlzol(w).
According to part (3) of Theorem 8.2.5, A can be completed to the fundamental
domain A of T'in X sothat ¢l ¢ (A) = clx (A) Uw.

8.3. QUASI-ISOMETRY INVARIANCE

Every two arithmetic subgroupsI'y, I'> in G are commensurable, hencetheir Cayley
graphs are quasi-isometric. This also implies that if d; are I';-invariant metrics in
X transported from X /I';, i = 1,2, then (X, d1) and (X, d») are quasi-isometric.
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PROPOSITION 8.3.1. The system of boundedly saturated sets in X-Xisa
quasi-isometry invariant of (X, d).

Proof. Let (X,d1), (X,d,) be quasi-isometric structures on X. It suffices to
show that for asubset 2 C X and alarge D1 >> 0, the enlargement 2[D;]; with
respect to d; is contained in Q[Dy], for some D, > 0. If A, e are the constants
associated to the quasi-isometry id: (X,dz) — (X,d1), let Dy = (D1 — €)/\.
Thenz € Q[D3]2 = da(z,0) < D2,0 € Q = di(z,0) < Ada(z,0) + € = D1.

Recall I" < G(Q) constructed in Section 8.2. Since ¢;%; ,g; " are precisely
the parabolic vertices of £, the complement £\ UM, giAg; s compact, so aT-
domain is contained in A[D]r for some D > 0. Thisimplies even more directly
that the boundedly saturated sets determined by " and I’ coincide. Now we can
study the bounded saturation using the simpler domain A.

8.4. SATURATION IN RATIONAL STRATA

Fix the coordinate map o def o L R" — No = e(P,) defined in Section 4.2.

Let O = {(z;) e R : 0< z; <1, V1 <4 < r}, then o(O) is a domain
for I N Ny in e(Pp). The translates form a cellular decomposition of e(FPy). The
induced decompositions of e(P), P = gPog~! € Py, areinvariant under I' N N,
hence are well-defined.

Let Z; def (vi) = Gi NIy, where I, = I' N P(Q). The computation in
Section 4.2 shows that the union of translates of the fundamental cube go(©)g—*
in e(P) by the coset I, /Z; disconnects e(P). If x;:Z — Z; is the obvious
isomorphism then x;(n) - I, /Z; aso disconnect e(P). We will call these unions
of cellswallsin e(P) and denote them by W; ,,.

PROPOSITION 8.4.1. Each cell in the decomposition of 7(P) from Section 4.2
for P € Py isboundedly saturatedin Y.

Proof. The closures of walls in e(P) disconnect v(P). The complements of
W, n, are denoted by Ri Note that the cell in 7(P) corresponding to the i-th
coordinate and the posmve or negativedirection istheinverse limit of RZ N €L,
ordered by inclusion. Choose a cell o by fixing ¢ and +, loosing no generality.
If y € 6X\v(P), say y € v(P’'), then the geodesic asymptotic to both W (P)
and W (P') projects to § € e(P). Then j € W,;, for some n € Z. Denote
Cint Wi n+1 U Wi 2 UW; pi3)) by Bi . If thesubset = C T N Np makes
Win+z2 =E-wthen(I"/T'"NN)E-A C B; ny2, 0 B; ni2isabarrier separating
y and o into the different connected components of 6 X\ By, 121y € H;, 15,0 C
Hipio 1T {ys} C Ys} C H; 4o iS@SEGUENCECONVErging to y then {ys HANH, 2= 0.

Inductively {ys}[D]NH, "wr3p = 0, therefore, {y;}[D]No = (. By Lemma5.1.2,
o isboundedly saturated.
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8.5. INTERSTRATOUS SATURATION

Two sequences {z1}, {x?} in ametric space (X, d) are called fellow travelers if
thereis K > O suchthat d(z},2?) < K forevery i € N.

271

LEMMA 85.1. Let {y;} and {z;} be sequences in (X,d) converging to y €
v(Py)NY,zev(P,)NnY.If P, # P, thenthe sequences do not fellow-travel.

Proof. Let y;, z; be the points in the image of the imbedding ¢: IV — X,
v = v-x0, To € A C A, inthe sametrandate of the domain A asy; and z;. Since
d(yi,yi) < D,d(zi, z;) < D,itsufficestoshowthat {y;}, {z; } donot fellow-travel.

Suppose that y; = «(v}), zi = ¢(7}). Observe that if the sequences {y;}, {z:}
fellow-travel in the I'-invariant metric dr then they aso fellow-travel in the Rie-
mannian metric d¢. Indeed, in the T-invariant metric d(g;, z;) = d((v}) (%),
(Y)~Y(z)) = d(u(I), (7})~1(%)). Sincethereisaconstant M suchthat d(y;, z;) <
M, al of (y/)~1(z;) are contained in a word-metric ball in «+(I") of radius M
centered at :(I). They form a finite set which is, therefore, bounded in the Rie-
mannian metric d in X which is G-invariant. So there is a constant NV such that
de (i, z) = da(u(1), (4}) 7M7) < N.

Now each translate v - A contains at most a finite number of points {y;} for
otherwisey € v-w C y-A C CY. Thusthe sequence{;} takesoninfinitely many
values. By inspection of projections into e(Py), lim;,o{7:} = W(P,) € 0X.
Same argument shows that the limit of {Z;} in e X is W (P,). This shows that the
sequences{y; }, { z; } do not fellow-travel in the Riemannian metric; neither do they
in our metric dr by the observation above.

COROLLARY 8.5.2. Each stratum-component ¢(P) = v(P)NY, P € P, 0f Y
is boundedly saturated.

Proof. If ¢(P) isnot boundedly saturated thentherearefellow-traveling sequences
{yi}, {#i} convergingtoy € ¢(P) and z ¢ ¢(P) (seethe proof of Lemma5.1.2).
Thisisimpossible by Lemma8.5.1.

That the boundaries of rational strata are boundedly saturated is not new: this
follows from Proposition 8.4.1 and Corollary 5.1.4. But Corollary 8.5.2 also says
that each v(P), P = Pg\ Py, is boundedly saturated.

Remark 8.5.3. It is impossible to use the theorems of Section 5 about right
actions here: the right action of G(R) on X does not extend to X . For example, in
the SL,-situation, in the upper-half plane model, the image of the y-axis

; ‘<a ﬁ)_ <55+a7~|—i>
T \y )T\ 22
isastraight Euclidean linewith slope 1/(36 + ary), not ageodesic. It isinteresting

to note, however, that there are constructions of Mumford et a. ([3], [39, IV,
Sect. 2]) to which the right action naturally extends. Compare the pictures on page
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179 in [39]. The lines in the second picture, if extended, should converge at the
other endpoint of the horizontal geodesic. They are precisely the images of the
right action computed above.

9. Proof of Theorem 3
9.1. ORDERLY COVERINGS

Givenacoveringl/ € Cov® X, theproof of compactnessof X (Section 7.3) required
a construction of a finite covering {V (F;)} of 0.X associated to some regular
naghborhoodsRegn (P;) of 7(F;). Wewant avariation on that constuction which,
given a covering Y € Cov®Y’, refines . Recall from Section 5.5 that Star? (v)
is the open star of v € Tp(V(,,)) C v(P), P € P, in the projection of the nth
derived cubical decomposition of I".

DEFINITION 9.1.1. Let usalter the notation C(Stary (v)) in thisdefinition to mean
Star? (v) when v € e(P). Define

Ord,(v) =Y NC(Stard(v)) \ |J v
PEF

where F isthe set of al P’ with gp (W (P')) € 0 Starl (v).

It is clear that Ord,, (v) is an open neighborhood of v in Y. For any covering
U € Cov®Y thereisan order n such that {Ord,, (v) : v € Tp(V(,)) N Y} refines
{UelU:Unwv(P) # 0}. Now it is clear from compactness of Y that there
isafiniteset {P, : k € A} C Pr and integers n, so that |J,{Ord,, (v) : v €
Tp(Vin,)) C v(Py)} refinesthe given i € Cov®Y'. Thefull cofinal subcategory
of Cov®Y consisting of such orderly refinements will be denoted by Ord®Y .

In order to create manageablerigid coverings, we consider the excised versions
of the sets Ord,, (v):

ExcOrd,, (v) = Ord, (v)\Stard (v).

Now EzcOrd®Y is the category of open coverings V which contain some i/ €
Ord®Y as a subset and may contain ExcOrd,, (v) if Ord,,(v) € U. The cofinality
property mentioned aboveis certainly not affected.

DEFINITION 9.1.2. Let PREORDY bethefull subcategory of Cov Y with objects
B € PREORDY satisfying

—impB € ExcOrd®Y
—y € v(P) for somek < f3(y) = Ord,, (v) for somev € v(F).

Itisimplicit in the second condition that for y ¢ v(Fy) for all k, thereexists? € A
and n, with 3(y) = ExcOrd,,, (v) for somewv € v(F). Define Ord Y to bethefull
subcategory of Cov Y closed under x -operation generated by PREORD Y.
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It iseasy to seethat Ord Y isnot cofinal in Cov Y but satisfies the hypotheses
on the category C in Section 2.3. Recall that the conclusion of that section was that
the map

75:h(Y; KR) — holim(N_ A KR)

(—
OrdY

induced by theinclusion j: Ord Y — Cov Y isaweak homotopy equivalence.

9.2. DEFINITION OF {«}

Theideaisto definefiniterigid coverings of Y by boundedly saturated setswhich
can be naturally ‘piecewise’ approximated by coverings from Ord Y. Let Ny =
Np, for the standard P, € Pg. Consider the covering of 01" by the 2" open stars of
V(1) inthe (—1)-st derived decomposition. Theimages Y op(Star®(v_1(s1, - - -, 51)))
cover the boundary T Ny. The sets are no longer open but they are boundedly satu-
rated with respect to the I'-invariant metric as a consequence of Proposition 8.4.1
and Corollary 5.1.4.

DEFINITION 9.2.1. The covering Ag of 7Ng by the sets

Top(Star®(v_1(s1,...,5r)))

is finite but not open. This choice generates the category {«o} of finite rigid
coveringsag of 7 Ng. Noticethat it followsfrom property (2) of finiterigid coverings
that im ap = Ap.

Noticethat the homotopy type of N Ag s, infact, that of the (r — 1)-dimensional
sphere: the nerve of A is the same as the nerve of the open star covering of 01"
with respect to the (—1)-st derived decomposition, and that can be easily seen to
be homotopy equivalent to 5™ 1.

The choice of Ay provides well-defined coverings Ap of v(P), P € Py,
by G(Z)-translates of Aq. There are also associated rigid coverings {ap} with
imap = Ap.

DEFINITION 9.2.2. Givenacoveringw € OrdY ,w = 71 X ... X 7, Whereeach
m; € PREORDY . Let{ P, : k € A} bethefinitecollection of parabolic R-subgroups
associated to ry, . . . , mpy,. Collect the following data:

1. for each P € Py pick an arbitrary ap € {ap} — in particular, for each
P, € Py thereisay, € {ap, },

2. for each P ¢ Py take ap to be the constant rigid covering with imap =
v(P).

Define the following finite rigid covering a(w, ap):

() = a(y) U (w(y)\v(Pg)) ify € e(Py) forsomek € A,
| w(y) otherwise.
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Since each w(y), y ¢ v(P) for k € A, isaunion of closed stratav(P) NY,
it is boundedly saturated by Corollary 8.5.2. Same is true about w(y)\v(F%),
y € v(Pg). Also, dl imay, k£ € A, are boundedly saturated by Proposition 8.4.1
and Corollary 5.1.4. Thusal a(y), y € Y, are boundedly saturated subsets of Y.

9.3. PROOF OF THEOREM 3

Now we can return to the argument started in Section 3.4 and useC = Ord Y and
o = a(w,ap) for w € OrdY. We have seen that * is a weak equivalence. It
remains to see that the orderly sets are nice enough for al inclusionssat,: NG <
N«(pB) to be homotopy equivalences.

This is the way one would proceed if there were no need to make the con-
struction of X equivariant. Instead of v(Bg) we would use nonequivariant but
simpler compactifications by cubes of appropriate dimensions. With the obvious
choices of cubical derived decompositions (induced by T which is now a cellu-
lar homeomorphism) and the other constructions repeated literally, the saturation
process in the boundaries of rational strata would produce sets which are stars of
lower-dimensional sides. It would be enough to consider the stars of the vertices.

Now notice that there is a projection of this hypothetical situation to the real
equivariant Y. This projection induces an equivalence on the Cech homology level
by our weak VietorisBegle theorem 7.4.1. Also, the images of the saturations
in the hypothetical boundary Y™P project to precisely the boundedly saturated
sets we construct in Y. There is a well-defined functorial ‘lift' from our «'s to
the saturations in Y™P with the same combinatorics. The induced maps form a
commutative diagram:

sat. .
holim (N_ANKR) —— holim Na(_)ANKR
— —
Ord Y Ord Y

~ ~

holim(N_AKR) ——— holimNa(_)AKR
— —
OordY OordY

So our constructions induce precisely the needed map. Now inclusions of nerves
N — Na(f) induce natural weak equivalences NG A KR ~ Na(8) N KR.
This follows from the fact that factoring out a contractible subcomplex generated
by a subset of vertices factors through the inclusion into the complex where the
same subset generates a simplex. This is precisely what happens with finitely
many disjoint subcomplexes associated to sets covering the specia strata. We can
concludethat «, is aweak homotopy equivalence by Theorem 1.1.2.
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Remark. It is easy to see that the obvious reconstruction of w from «(w, ap)
which *forgets' about the choices of oy, in {ap,} defines a functor R: {a} —
Ord Y . Thisisthe exact inverse to «. The natural induced map

R*:holim(Na_ A KR) — holim(NaR _ A KR) =holim(N_ A KR)

isaweak equivalence of spectraby Theorem 1.1.3. Now the composition

R*a,7*:h(Y; KR) — holim(Na A KR)
ae{a)

isaweak homotopy equivalence with the required target.

Appendix A. Other Theories. Other Groups. Other Methods
A.1l. EXTENSIONS TO OTHER THEORIES

Theextension of the K -theoretic resultsto L-theory isformal using thebasicresults
of [16, Sects4, 5]. The statementsabout the L-theoretic assembly mapsarethe same
as before when the coefficient spectrum is replaced by the nonconnective spectrum
L~°°(R) for aring with involution R satisfying K_;(R) = 0 for sufficiently large
i. The homotopy groups ; (L~ °°(R)) are the surgery obstruction groups L;(R).

Theextensionto A-theory istrickier. The necessary details are provided by [19]
and earlier papers of W. Vogell.

If C*(T") denotes the group C*-algebra of T' (the completion of L(I") in the
greatest C*-norm), Kasparov defines a: RK . (BT') — K..(C*(T")). The splitting
of this map implies the Novikov conjecture for I'—see the explanation on page
414 of [49] or Corollary 2.10in [50]. The recent work of Carlsson—Pedersen—-Roe
[18] extends the methods used here to work for this C*-algebraic version of «.

A.2 HILBERT MODULAR GROUPS

Let F beatotally real algebraic number field of degreen over Q, let O bethering
of integers of F'. Consider G = Rp,SL2, the Q-group obtained from SL,/ F by
restriction of scalars according to Weil ([56, Section 1.3]). Then G(Q) = SLy(F),
G(R) = SL2(R)™ isaconnected semi-simpleLiegroup, K = SO(2)" isamaximal
compact subgroup, and the associated symmetric space X (G) = H" has rank n.
Any subgroup of finite index in G(z) = SL2(Op) is an irreducible lattice in
G(R) embedded viathe inclusion SL,(Op) < SL2(R)™ by using the n distinct
Q-homomorphisms F' — R as coordinate functions.

The Hilbert modular groups are SL»(0g4), where Oy is thering of integersin
the real quadratic field Q(v/d). Here the two homomorphisms O; — R are the
inclusion and the Galois conjugation. We will assume that T" is a neat arithmetic
subgroup of SL2(Oy). (A subgroup I' is neat when the subgroup of C* generated
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by the eigenvalue of any element of T is torsion-free. In particular, T" itself is
torsion-free.) The quotients I"'\ X are called the Hilbert(—-Blumenthal) modular
surfaces.

Examples of such arithmetic subgroups of G are the principal congruence
subgroups

P[6] = ker (SL2(04) ™3 SL2(04/(1)))

for¢ > 3.

THEOREM A.2.1. If T' is a neat arithmetic subgroup of Ry, ,oSL2 then the
assembly map « isa split injection.

If Py is the standard parabolic Q-subgroup of SL, then By = Py x Py isthe
standard parabolic Q-subgroup of G = Rp,/oSL2. The Q-rank of G is one. The
stabilizer of the standard cusp in I is a uniform lattice in the solvable Lie group
Sol, and the associated stratum in the Borel-Serre enlargement can be identified
with the underlying space of Sol ([26], [34, Sect. 3.H]) where the stabilizer acts by
left multiplication.

The group Sol can be expressed as a semi-direct product of R? and R: if the
elements of the set Sol = R? x R are (z,y, z), the action of z is the linear
transformation given by (z,y) — (€ - z,€ % - y). We can transport the flat metric
from R® into Sol using this identification. The straight lines through the origin in
Sol are then given as

L= {(a} + taf, 25 + tzd 2%+ t24) . t € R}.
Here isthe formulafor the left action of (y1,y2, y3) € Sol on thisline:
(y1,y2,93) © L = (y1 + €°(a} + ta]), y2 + €7(a3 + ta9), y3 + 2§ + ta5).

It shows that Sol acts on the parallelism classes of rays in the stratum. The right
multiplication action of Sol on itself does not extend to the parallelism classes of
rays. There is one set of lines, however, invariant under the right action: if z¢ = 0
then

b _ b
Lo (y1,y2,y3) = (2% + ta + €%y, 24 + tod + e %Syp, 2% + y3).

The formula also shows that each class of linesin this set is actually fixed by the
right action.

Now consider the ideal compactification of Sol with the flat metric. Each point
in 9(Sol) with ¢ = 0 can be blown up to a closed segment, the interior points
corresponding to subclasses of lines with the common coordinate —oo < 4 <
+00. The result will be called v(Sal).

The same methods as in Section 5 apply and show that each open segment
is boundedly saturated as well as each of the endpoints and each of the comple-
mentary hemispheres. The closed segments above are the elements of a cylinder
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Sol U [—00, +00] x 9D? C v(Sol). Let usidentify v(Sol) with the closed cylinder
[—o0, +00] x D? and embed »(Sol) in R® with cylindrical coordinates (r, 6, z)
astheset defined by 0 < 7 €< 1,0 € 0 < 27,and 0 € z < 1. Given a nat-
ural number n, define the n-th standard sectoral decomposition of »(Sol) to be
the representation of »(Sol) as the union of sectors S,,(z,j,k) = {(r,0,2) €

3 /2 < < i+ 1)/20 jr/2 < 0 < (4 D2 k20 < 2 <
(k4 1)/2"} for every choice of theintegral triple 0 < 7, j, k < 2" — 1. The points
vn(i,5,k) = (i/2%, jm/271, k/2") for 0 < 4,7,k < 2" will be called vertices,
A vertex in the N-th subdivision determines star Star(v,, (7, 7, k)) = {(r,0,z2) €
R (i - 1)/2" <r< (i+1)/27, (j-D7/27 <0< (j+D)n/27Y, (k—1)/2" <
z < (k+1)/2"} with the obvious modifications when 7 or £ equals O or 1. Also
links and open stars are defined by direct analogy with their simplicial analogues.

The boundary set § X isthe union of the rational strata

50X % 1 (S0l) x 4s,1) G(Q)

and the irrational points at infinity with the auxiliary topology defined by the
obvious analogy with Section ??. Now Xp istheanal ogue of X or, more precisely,
Xy, from Remark 7.2.1. The basic neighborhoods of irrational pointsat infinity are
completions of their neighborhoodsin the spherical topology.

Using the argument from Remark 7.2.1, it is easy to seethat X}, is compact but
not Hausdorff due to the arrangement of higher dimensional maximal flats in X
(seeRemark 7.2.1). In order to induce the Hausdorff property, consider the set map
f:Xb — eX. Theideais to make this map continuous. Introduce a new topology
in Xy, generated by the intersections of basic neighborhoods ' (z), z € Xp, and
the preimages of neighborhoodsof f(x) € eX. Since eachfiber of f is Hausdorff,
and the analogue of Lemma 7.1.3 holds, the new topology on Xpis Hausdorff and
makes f a quotient map. Denote the new space by X.Themap f: X — X can
be used asin Section 7.4 to show that X is Cech-acyclic.

The rest of the argument for the R-rank one case generalizes easily, we only
need to indicate the boundedly saturated sets we choose inside the rational bound-
ary strata. It suffices to show the subsets of €(Bp) = v(Sol). For the chosen
n € 2N and ¢ € {0,1}, they are A(n,5,¢) = {(r,6,6)} U{(r,0,2) : r =
1 (2j+&—Dr/2"t < 0 < (2 +E+Dn/2%7 2 € (1-€,€]} where
0 < j < (V2" — 1isan integer. These are open stars of certain collections of
verticesin the 2n-th standard sectoral decomposition.

Remark A.2.2.

1. The construction of the map f is apparently the correct way to deal with the
genera case of alattice in a Hermitian symmetric domain. The target must
be the maximal Satake compactification which coincides with ¢ X in the rank
one situation (cf. [32, Sect. 10.3, Sect. 12.5, Appendix D]).
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2. The ad hoc construction of ©(Sol) is designed to be analogousto the NiL case.
The correct way to deal with Sol = ¢(By) is, of course, using [33, Lemma
(7.8)] mentioned before.

A.3 OTHER APPROACHES TO NOVIKOV CONJECTURES

FerWel There has been alot of research done on Novikov and related conjectures.
The most recent progress known to us is connected with the work of Bokstedt—
Hsiang—Madsen, Carlsson—Pedersen, Connes-Gromov—M oscovici, Farrell-Jones,
Ferry—Weinberger, Higson—Roe, Julg—Kasparov, Ogle, and others.

Themethod of S. Ferry and S. Weinberger ([27, 28, 29]) usesasimilar ‘ bounded
control philosophy’. They call an endomorphism of a metric space f: X — X
bounded if thereisk > O suchthat d(f(z),z) < kforal z € X.

THEOREM A.3.1 (Ferry—Weinberger). If T' is a discrete group such that K =
K(I',1) isafinite complex and the universal cover X = K hasa compactification
X with the properties that

1. the boundary X — X C X isa Z-set, i.e, admits a homotopy F;: X — X
with Fp = id, F3(X) C X for all t > 0, and

2. every continuous bounded function f: X — X extends by identity to a contin-
uousfunction f: X — X,

then the L- and A-theoretic Novikov conjecturesfor I" hold.

Wewish to describe onedifficulty in using our compactification in this approach.
TheLiealgebran of the nilpotent radical of P € Py decomposesinto adirect sum
n = ny @ nyy, where X is the unique ssimple root of (P, A) —aconsequence of the
R-rank oneassumption. Thedimensionsdim(n, ), dim(ny, ) equal themultiplicities
of A, 2)\. After exponentiating we get N = N, Ny, with Ny N Ny, = {I} and
Nyy = [N, N]. If Npy # {I} then N is anon-Abelian two-step nilpotent group
with center No,.

Inthesituationwhen NV isnon-Abelian, thereexistsan element g € IV suchthat g
actsnontrivially fromtheright on 7NV. Thisaction¢,: TN — 7N istheextension
from the action ¢, on IV which in its turn extends to a bounded endomorphism
U of X. The point is that ¥ cannot be extended to an endomorphism of X by
identity on'Y", so even our compactification of e(P) cannot be used here. However,
this obstacle disappearsin the case when NV is Abelian, for instance, in the case of
G = SOq(n, 1).
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