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Abstract. We construct a new compactification of a noncompact rank one globally symmetric space.
The result is a nonmetrizable space which also compactifies the Borel–Serre enlargement �X of X ,
contractible only in the appropriate Čech sense, and with the action of any arithmetic subgroup of the
isometry group of X on �X not being small at infinity. Nevertheless, we show that such a compacti-
fication can be used in the approach to Novikov conjectures developed recently by G. Carlsson and
E. K. Pedersen. In particular, we study the nontrivial instance of the phenomenon of bounded satura-
tion in the boundary of X and deduce that integral assembly maps split in the case of a torsion-free
arithmetic subgroup of a semi-simple algebraic Q-group of real rank one or, in fact, the fundamental
group of any pinched hyperbolic manifold. Using a similar construction we also split assembly maps
for neat subgroups of Hilbert modular groups.
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Introduction

Let � be a discrete group. Consider the assembly map �:B�+ ^ S(R)! S(R�),
where S(R) is theK-theory spectrum for a ringR (see Section 1.3 below or Loday
[41]). There are also L-, A-theoretic and C�-algebraic versions of this map. It is
known that for S = L and R = Z, the splitting of � implies the classical form
of the Novikov conjecture on the homotopy invariance of higher signatures for
manifolds with the fundamental group �. By analogy, each of the other versions is
called the (integral) Novikov conjecture in S-theory, and there are separate reasons
for proving each of them (see Section 1.3). In the presence of torsion, assembly
maps do not always split, so attention is naturally restricted to torsion-free groups.

Carlsson, Pedersen, and Vogell verified the conjecture in K-, L- andA-theories
for groups satisfying certain conditions ([16, 19]). For the sake of simplicity we
state only the K-theoretic version:

THEOREM 1 (Carlsson–Pedersen). Suppose there exists E� such that the �-
action is cocompact and extends to a contractible, metrizable compactificationbX of E� so that the action of � on bX is small at infinity, then � is a split injection.
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If � acts on a space X with an equivariant compactification bX = X [ Y , the
action is called small at infinity if for every y 2 Y , compact subset Z � X , and
neighborhood U � bX of y, there exists a neighborhood V � bX of y such that if
gZ\V 6= ; for some g 2 � then gZ � U . Examples of such situations are the ideal
compactification of a complete nonpositively curved manifold (with a cocompact
action) or the analogous constuction for a contractible Rips complex associated
to a Gromov hyperbolic group. Notice that these are essentially geometric com-
pactifications performed with one’s eye toward extending (quasi-)isometries to the
boundaries so that quasi-identities extend to trivial maps of the boundary. In par-
ticular, every subset of Y in these examples is boundedly saturated in the sense of
the following definition. A set A � Y is boundedly saturated if for every closed
set C in bX with C \ Y � A the closure of any of the d-neighborhoods of CnY
satisfies (CnY )[d] \ Y � A.

After a considerable refinement of the methods in [17], this result has been
improved to

THEOREM 2 (Carlsson–Pedersen). Suppose there exists E� with the one-point
compactificationE�+ such that the �-action onE� is cocompact and extends to a
Čech-acyclic compactification bX = E� t Y so that there is a �-invariant system
f�g of coverings of Y by boundedly saturated open sets and a weak homotopy
equivalence

holim
 ����

U2CovE�+

(NU ^KR) ' � holim
 ����
�2f�g

(N� ^KR);

then � is a split injection.

This theorem is part of a very general approach initiated in [13, 15]. The
statement of Theorem 2 and its modification that we actually use will be explained
in more detail in Section 3. The purpose of this article is to provide examples
where these new phenomena appear and get used. A general torsion-free arithmetic
group seems to admit similar constructions, but then their analysis becomes more
involved. From such a perspective, this paper completes the first two steps in a
general inductive argument. Here we prove

THEOREM 3. Let G be a semi-simple linear algebraic group defined over Q of
real rank one. If � is a torsion-free arithmetic subgroup of G then � is a split
injection.

The simplest example of the situation in Theorem 3 is when G = SL2. Let X
be the hyperbolic disk which is the symmetric space associated to G. Borel and
Serre constructE� for any torsion-free arithmetic subgroup � ofG by blowing up
each rational point on the boundary circle of X to a line. To compactify this space,
we blow up all of the remaining points on the circle and provide each of the lines
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with two limit points. The resulting boundary ofX is set-theoretically the cylinder
S1� I . The compact Hausdorff topology we introduce in our space restricts to the
circular lexicographic order topology on S1� I . In particular, for any arc C � S1,
C � I is homeomorphic to the classical unit square with the lexicographic order
topology. Recall that this topology is compact but not separable. This makes C� I
and S1 � I and our space nonmetrizable.

It will be observed that there is an analogue of the construction above where only
the rational points are resolved to lines. For some but not all groups in Theorem 3
the action at infinity in the altered compactification is small. For groups where a
cusp stabilizer is non-Abelian (e.g., for symplectic groups) the action will not be
small in either compactification; hence the title of this paper.

Many of our constructions and results can be done and hold in greater generality
than needed for the proof of Theorem 3. For example, Section 4 compactifies
N = E� for a torsion-free finitely generated nilpotent group �. We could follow
it by a proof of the Novikov conjecture for such groups which is not a new result
by itself (cf. [15, 48]). The importance of Section 4 is the role as the base case it
plays in the construction of bX for an arbitrary arithmetic group. Here the action of
� on bN is already not small at infinity. This property is preserved in the ambient
construction for G from Theorem 3 where copies of bN for certain one or two step
nilpotent groups embed. Section A.3 contains a discussion of this situation and its
relation to other approaches to Novikov conjectures.

The arithmeticity hypothesis in Theorem 3 can be dropped. When the construc-
tion of Borel–Serre in our argument is replaced by a ‘neutered’ pinched Hadamard
manifold (as in [25]), the stabilizers of boundary components are nilpotent, and the
proof of Theorem 3 in conjunction with Section 4 works verbatim to show

THEOREM 4. If � is a torsion-free fundamental group of a complete noncompact
finite-volume Riemannian manifold with pinched negative sectional curvatures
�a2 6 K 6 �b2 < 0 then � is a split injection.

It is known from [35] that there are pinched hyperbolic manifolds in each
dimension n > 4 which are not locally symmetric. All of these groups may be
classified as hyperbolic relative to a finite family of nilpotent subgroups in the
sense of [25]. It seems very plausible that using a cross of the constructions of Rips
and Borel–Serre, our argument also applies in this combinatorial situation.

In Section A.2 the argument is adjusted slightly to apply to lattices in semi-
simple Lie groups of higher R-rank:

THEOREM 5. If � is a neat arithmetic subgroup of a Hilbert modular group then
� is a split injection.

The use of a ‘topological’ approach as in Theorem 2 seems to be essential in both
of our applications. Recall that no SL2(Od) is bicombable ([31, Proposition 6.14])
and neither of the groups � in G 6= SO(n; 1) from Theorem 3 is combable ([24,
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Theorem 1.2]). These results make it doubtful that our groups have reasonable
geometric compactifications with small actions at infinity for it is precisely the
combings that are used to produce examples after Theorem 1.

The main body of this paper deals with the K-theoretic assembly map. In
Section A.1 we discuss the extension of our results to other versions of the map.

The material in this paper is a part of my Cornell Ph.D. thesis [32] which also
contains a proof of Novikov conjectures for torsion-free lattices in the semi-simple
group SL3 of split rank two.

1. Preliminary Material

1.1. HOMOTOPY LIMITS

We will use the language of simplicial homotopy theory ([43], [10, Part II]). A
functor from a small category F : C ! D is also called a C-diagram in D. Recall
that the limit and the colimit ofF are objects ofD characterized by certain universal
properties. They may not exist for an arbitrary diagram in S�SETS. The homotopy
limit and colimit are simplicial sets which exist for any diagram F and satisfy
universal properties with homotopy theoretic flavor. Homotopy limits are natural
in both variables. Here is a list basic properties of homotopy limits and colimits
which will be referred to later.

THEOREM 1.1.1 ([10, XI, Section 3]). There are natural maps

lim
 ����
C

F �! holim
 ����
C

F or hocolim
����!
C

F �! colim
����!
C

F

whenever the appropriate limit or colimit exists.

THEOREM 1.1.2 (Homotopy Invariance, [10, XI, Section 5]). Let �:F ! G be a
natural transformation of functors such that each �(C):F (C) ! G(C), C 2 C,
is a weak equivalence. Then hocolim� is a weak equivalence. If F (C) and G(C)
are Kan for all C 2 C then holim� is also a weak equivalence.

THEOREM 1.1.3 (Cofinality Lemma, [10, XI, Section 9]). Let �: C ! C0 and
F : C0 ! S�SETS be functors from small categories. If � is right cofinal (that
is, C 0 # � is nonempty and contractible for every C 0 2 C0) then hocolim� is a
weak equivalence. If � is left cofinal (that is, �#C 0 is nonempty and contractible
for every C 0 2 C0) and each F (C 0), C 0 2 C0, is Kan, then holim� is a weak
equivalence.

THEOREM 1.1.4 ([21, Section 9]). Let C be a contractible small category and
F : C ! S�SETS be a functor such that, for each morphism c 2 C, F (c) is a weak
equivalence. Then, for every object C 2 C, the obvious map

�F (C):FC �! hocolim
����!
C

F
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is a weak equivalence. If each F (C), C 2 C, is Kan then

�F (C): holim
 ����
C

F �! FC

is a weak equivalence.

We assume familiarity with the language of spectra ([1]). The results above
generalize to simplicial spectra ([15]), the notion of homotopy (co)limit being
extended via a level-wise construction in the obvious way. The foundational mate-
rial on simplicial spectra can be found in [53, Section 5].

THEOREM 1.1.5 (Bousfield–Kan Spectral Sequence [10, 15]). Given a functor
F : C ! SPECTRA, let �i � F : C ! ABGROUPS be the composition with the stable
�i. Then there is a spectral sequence converging to

��(holim
 ����
C

F ) with E
p;q
2 = limp

 ����
C

(�q � F ):

The following strengthening of the general Cofinality Lemma is very useful.

THEOREM 1.1.6 (Modified Cofinality Lemma [17, Lemma 2.8]). Let P be a left
filtering partially ordered set viewed as a category, and let {:P0 ,! P be the
inclusion of a partially ordered subset, also left filtering. Let F :P �! SPECTRA

be a functor and assume that for everyx 2 P there exist x0 2 P and y 2 P0 so that
x0 > x, x0 > y, and so that F (x0 > y) is a weak equivalence. Then the restriction
map

{�: holim
 ����
P

F �! holim
 ����
P0

F

is a weak equivalence.

1.2. ALGEBRAIC K-THEORY

This describes what we mean by K-theory here. In [47] Quillen constructed K-
groups of a ring R, Kn(R), n > 0. Before that the lower K-groups Kn(R),
�1 < n 6 2, were studied by Bass, Milnor, and others. The groups of Quillen
can be obtained as stable homotopy groups of connective spectra. The most suit-
able delooping machine to use in this situation is Thomason’s ([54]) functor Spt.
Pedersen and Weibel ([44, 45]) used this functor and controlled algebra to produce
a nonconnective spectrum K(R) whose homotopy groups are all Kn(R), n 2 Z.
They also show that this agrees with the nonconnective spectrum of Gersten and
Wagoner.
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The functor of Thomason constructs a connective spectrum for every small
symmetric monoidal category. If F is the symmetric monoidal category of iso-
morphisms of free finitely generated R-modules then Kconn(R) = Spt(F) is the
connectiveK-theory spectrum of R. More generally, if A is a small additive cate-
gory then the category of isomorphisms iA ofA is a symmetric monoidal category.
Let Ck(A) denote the category ofA-objects parametrized over the metric space Zk

and bounded morphisms (the prototype of the categories defined in Section 7) then
[45] constructs functorial maps

Spt(iCk(A)) �! 
Spt(iCk+1(A)):

Taking

K(A) = hocolim
����!
n>0


nSpt(iCn(A))

one gets a nonconnective spectrum. Again, if A is the category of free finitely
generatedR-modules then K(R) = K(A) is the Gersten–Wagoner spectrum.

1.3. ASSEMBLY IN ALGEBRAICK-THEORY

Let � be a discrete group and R a ring. The assembly map in algebraic K-theory

�n:hn(B�;KR)! Kn(R�)

was first constructed by J.-L. Loday. Let {:�! GLn(R�) be the inclusion of � in
(R�)� = GL1(R�). Then there is a map

�� GLn(R)
{�id
�! GL1(R�)� GLn(R)



�! GLn(R�)

defined by

g; (aij) 7�! (g � aij):

One can apply the classifying space functor B, pass to the limit as n ! 1, and
apply Quillen’s plus construction to induce the map

B�+ ^ BGL(R)+
B{+^id
����! BGL(R�)+ ^ BGL(R)+



�! BGL(R�)+:

This product is compatible with the infinite loop space structure of BGL( )+ ([41,
Section 11.2.16]). Delooping of this map results in the assembly map of spectra

�:B�+ ^K(R)! K(R�);

where B�+ is the classifying space together with a disjoint base point, and K(R)
is the Gersten–Wagoner nonconnectiveK-theory spectrum as in Section 1.2. This
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is the assembly map in algebraic K-theory. Loday’s assembly map is induced by
taking the homotopy groups:

hn(B�;KR) = �n(B�+ ^KR)
�n�! �n(K(R�)) = Kn(R�):

There is at least a couple of reasons why the study of this map is of importance
in geometric topology. One is the involvement of K(Z�) in the description of
the space of automorphisms of a manifold M with �1M = �. The other is the
connection with Novikov and Borel conjectures.

It is known that the homotopy invariance of higher signatures follows from
the splitting of the rational assembly map � in L-theory. The assembly naturally
maps the rational group homology containing the signature to the surgery L-group
where the image is a priori homotopy invariant. If the assembly is actually an
injection then the signature is homotopy invariant. This is the modern approach
to proving the Novikov conjecture. In fact, stronger integral conjectures can be
stated when integral group homology is used, and there are K-, A-theoretic, and
C�-algebraic analogues of these integral maps. For example, the statement parallel
to the above about classes in KO[1

2 ] is equivalent to integral injectivity of � (see
[57]). It makes sense, therefore, to call the conjecture that the assembly map in K-
theory is injective for torsion-free � the integral Novikov conjecture in K-theory.
A stronger and geometrically important conjecture that � is an isomorphism is then
theK-theoretic part of the Borel conjecture. For example, the vanishing of Wh(�)
would follow as a corollary to this.

There is another very interesting geometric application. The splitting of the
C�-algebraic version of the assembly map which can be obtained by applying the
same approach as taken here (Carlsson–Pedersen–Roe) gives what J. Rosenberg
calls the strong Novikov conjecture. That is known to imply rigidity and vanishing
results for higher elliptic genera ([40]).

1.3. ARITHMETIC GROUPS

LetG be a linear algebraic group defined overQ and writeG(Z) = G(Q)\GLn(Z).

DEFINITION 1.3.1. A subgroup � of G(Q) is arithmetic if � and G(Z) are com-
mensurable, that is, if the subgroup �\G(Z) has finite index in both � and G(Z).
A discrete group � is arithmetic if it is isomorphic to an arithmetic subgroup of
some group G as above.

Consider the real points G(R) of G. It is a real Lie group, and � � G(R) is
a discrete subgroup. The R-rank of G coincides with the rank of the symmetric
spaceX associated with G(R). WhenG is semi-simple, � acts freely and properly
discontinuously on X . The quotient manifold M = X=� is not compact unless
rankG = 0 but has finite invariant volume, i.e., � is a nonuniform lattice in G(R).

The most famous class of arithmetic groups are congruence subgroups defined
as the kernels of surjective maps G(Z)! G(Z`) induced by reduction mod ` for
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various levels `. Every arithmetic group contains a torsion-free subgroup of finite
index, but, according to Minkowski, the congruence subgroups of SLn of all levels
` 6= 2 are themselves torsion-free (see [12, p. 40]).

If G is a connected linear simple Lie group with R-rank one, there is a com-
plete classification available ([55]). The four possibilities are the Lorentz groups
SO0(n; 1), SU(n; 1), Sp(n; 1), and F4 , the automorphism group of the exceptional
simple Jordan algebra or, equivalently, the group of isometries of the Cayley projec-
tive plane with the appropriate Riemannian metric (see [2]). The class of rank one
arithmetic groups contains representatives of various interesting group-theoretic
phenomena: discrete subgroups of SO(n; 1) and SU(n; 1) are K-amenable while
lattices in Sp(n; 1) have Kazhdan property T .

Examples of torsion-free arithmetic subgroups here can be congruence sub-
groups of level ` > 3 of SL(n + 1;Z) \ SO0(n; 1). This identifies a particular
system of torsion-free arithmetic groups to which our Theorem 3 applies.

2. Modified Čech Homology

This section explains the setup for the recent work of Gunnar Carlsson and Erik
Pedersen referred to in the Introduction.

2.1. CLASSICAL ČECH HOMOLOGY

Let U be an open covering of a topological space X. The nerve NU of U is the
simplicial complex with members of U as vertices and a simplex fU1; : : : ; Usg for
each subset with U1 \ � � � \Us 6= ;. We may think ofNU as a simplicial setN� U .
If V is another open covering of X , and for each U 2 U there is V (U) 2 V so that
U � V (U) then one says that U refines V and writes U > V . If U = fU�g�2A
and V = fV�g�2B then the map of coverings U ! V is a set map f :A ! B such
that U� � Vf(�) for all � 2 A. Clearly, this map of vertices extends to a map
of nerves Nf :NU ! NV . All such maps for one particular refinement U > V
are contiguous (see [23]) and, therefore, induce the same map on homology or
homotopy groups of the nerves. Consider the partially ordered system CovX of
all finite open coverings of X . The resulting inverse system of Abelian groups
fHn(N ;S)gCovX always produces the inverse limit �Hn(X;S) called the nth
Čech homology group. The contiguity property of the refinement maps implies
that the same inverse system is obtained as fHn(N ;S)gCovs X , where Covs X is
the category of coverings and maps even though the functor itself is no longer a
pro-Abelian group.

Given a map of spaces f :X ! Y , any V 2 CovY pulls back to a covering
f�V 2 CovX in the obvious way. The injections Nf�V ! NV induce the
universal map

lim
 ����

f�Cov Y

Hn(N ;S)! �Hn(Y ;S):
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But the inclusion of inverse systems f�CovY � CovX induces another universal
map

�Hn(X;S)! lim
 ����

f�CovY

Hn(N ;S)

and the composition of the two is denoted by f�. This makes �H� functors. Actually,
�H� are almost a homology theory: they do not satisfy the exactness axiom ([23]).

This is the classical Čech homology theory.

2.2. MODIFIED ČECH HOMOLOGY

Another way to construct a functor similar in spirit is to take the inverse limit of the
diagram of nerves fN gCovs X , or spectra fN ^ SgCovs X , or simplicial spectra
fN� ^ SgCovs X , and then take homology groups, or stable homotopy groups,
of the result. However, for the limit above to always exist, it must be a homotopy
inverse limit. Notice also that the functor N can only be defined on Covs X and
not on CovX . The maps are induced just as above.

Notation. Whenever we write holim (N ^ KR) we understand a simplicial
spectrum, where N stands for the simplicial set generated by the classical nerve
complex via the total singular complex functor. The maps are usually induced from
PL maps.

Remark 2.2.1. The values of the functor N : Covs bX ! S�SETS mapping a
covering U to the simplicial nerve NU are not necessarily fibrant. To improve
homotopy invariance properties of homotopy limits we adopt a convention which
is used in [15]. Recall that there is a functorial replacement K1Q:S ! !S of
a spectrum by a weakly equivalent Kan 
-spectrum. The convention is that if
F : C ! S is a diagram whose values are not Kan 
-spectra then the notation
holim(F ) will mean holim(K1QF ). This convention simplifies hypotheses in
standard results about homotopy limits.

Recall that C is a left filtered category if for any two objects C1; C2 2 C there
exists C3 2 C with Mor(C3; C1) 6= ; 6= Mor(C3; C2). If, in addition, for any two
morphisms m1;m2 2 Mor(C;C 0) in C there exists C 0 2 C and m 2 Mor(C 0; C)
with m1 �m = m2 �m, then C is called left filtering. According to Quillen ([47]),
every left filtering category is contractible.

Note that the homotopy limit above is taken over the category Covs X with
morphism sets Mor(U ;V) consisting of contiguous maps U ! V . It is easy to see
that although Covs X is left filtered, it is not left filtering. Instead of this category
Carlsson and Pedersen use, following Friedlander, the category of rigid coverings.
This category is, in fact, a partially ordered set: morphism sets are either empty
or singletons. One advantage of this choice is the ease with which the Cofinality
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Lemma 1.1.3 and the Modified Cofinality Lemma 1.1.6 can be applied. The more
important consequence is the exactness property for the resulting Čech homology
(Definition 2.2.3).

DEFINITION 2.2.2. A finite rigid covering of X is a set function � from X to
open subsets of X which takes only finitely many values and satisfies (1) x 2 �x
for all x 2 X and (2) ��1U � U for all U 2 im (�). Each finite rigid covering can
be thought of as a covering in the usual sense. Set N(�) = N(f�(x) : x 2 Xg).
This time the nerve is an infinite simplicial complex unlessX is finite.

We will denote the category of finite rigid coverings by Cov X . There is a
unique map �1 ! �2 if �1(x) � �2(x) for all x 2 X . Now Cov X is left filtering,
so the maps can be indicated simply: �1 > �2.

DefineF :Cov X ! Cov
sX to be the forgetful functor � 7! fUx = �(x)gx2X ,

where Cov sX is the category of open coverings ofX which may be infinite as sets
but employ only finitely many open subsets of X . In particular, F�, � 2 Cov X ,
are always infinite if X is infinite, but the covering sets come from the finite im�.
Now N(�) = N(F (�)) is clearly a functorial construction.

Let us emphasize that the assignment � 7! im� 2 Covs X is not functorial.
However, the obvious projection F (�) ! im � induces a homotopy equivalence
on nerves according to Quillen’s Theorem A.

DEFINITION 2.2.3. The Čech homology ofX with coefficients in S is the simpli-
cial spectrum valued functor

�h(X;S) = holim
 ����
Cov X

(N ^ S):

THEOREM 2.2.4 ([17]). �h( ;S) is a Steenrod homology theory.

OTHER MODIFICATIONS

OthMods The construction of the modified Čech homology is almost what Edwards
and Hastings did in [22, Section 8.2] to construct their Steenrod extension sh(X;S).
They used the functorV : TOP! PRO�S�SETS,X 7! fV N(U) : U an open cover of Xg,
where V N denotes the Vietoris nerve. The rigidity of the Vietoris construction
makes V land in a pro-category. On page 251 they say that ‘an interesting problem
is the construction of a nerve that is small like the Čech nerve and rigid like the
Vietoris nerve’.

The modified Čech homology is one possible answer to this question. After all,
the nerves of the underlying open coverings are small. Another somewhat thriftier
way to rigidify the Čech construction is to mimic the construction of Chogoshvili
([20]). This was done in [51] after Edwards and Hastings: the Vietoris nerve is
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again replaced by the Čech nerve, but the category of coverings is arranged to be
left filtering as follows. For a compact Hausdorff space X , let A be the set of all
finite decompositions of the set X . An element E = (E1; : : : ; Ek) 2 A consists of
arbitrary subsets Ei � X such that Ei \ Ej = ; for i 6= j, and

Sk
i=1 = X . A is

ordered by inclusions. LetCov(X) be the set of pairs (E ;U), where E = fEig is a
decomposition from A, U = fUig is a finite open covering of X with Ei � Ui for
all i so that this correspondence indices an isomorphism of the nerves NE �= NU .
For two elements� = (E ;U), � = (D;V), say that � > � if E > D and Uj � Vi
when Ej � Di. With this ordering, Cov(X) is left filtering. The projection to the
second coordinate gives a system cofinal in Covs X , and the nerves are defined by
N(E ;U) = NU .

2.3. COFINALITY IN ČECH THEORY

First, we define some operations in Cov X .
(1) Given � 2 Cov X , define \� 2 Cov X by

(\�)(x) =
\

x2�(z)

�(z):

Notice that \� > �. Another way to view this construction is as a canonical
rigidification of the classical finite open covering im�.

(2) Given a finite subset f�ig � Cov X , define \�i 2 Cov X by

(\�i)(x) =
\

i;x2�i(z)

�i(z):

Notice that \�i > �i for every index i, and \� = � \ �.
(3) Given a finite subset f�ig � Cov X , define ��i 2 Cov X by

(��i)(x) =
\
i

�i(x):

Again,��i > �j for every index j.
Choose and fix a (left filtering) subcategory {: C ,! Cov X closed under the

�-operation.
It is necessary to enlarge morphism sets in Cov X . Let Cov is X be the category

of set maps�:X ! O(X), the open subsets ofX , such that im� is a finite set satis-
fying the two conditions from Definition 2.2.2. Morphisms �:�1 ! �2 2 Cov

is X

are set endomorphisms �:X ! X with the property that �1(x) � �2(�(x)) for all
x 2 X; they will be called soft refinements. The existence of such a refinement is
denoted by �1 � �2. If � is realized by the identity map, we call � a rigid refine-
ment, denoted by �1 > �2. The subcategory of Cov is X with only rigid morphisms
is precisely Cov X .

For each morphism � 2 Cov
is X , let 	� denote the domain and �� the range

of �:	� ! ��. Consider the subcategoryM0 of the category of morphisms of



330 BORIS GOLDFARB

Cov
is X such that � 2 M0 iff (1) 	� 2 C, and (2) im (��) � � = im (��) and

�:�1 ! �2 2 M
0 iff (1) 	�:	�1 ! 	�2 2 C and (2) ��:��1 ! ��2 2

Cov X . Notice that �:�1 ! �2 2 M
0 forces �1 = �2 as set maps. This comes

from the requirement that (z) �2 � 	� = �� � �1. The same requirement implies
that (3) ��1(�1(x)) � ��2(�2(x)) which becomes simply the realization of ��.
Let us form a new category M with same elements as in M0 and morphisms
�:�1 ! �2 being pairs (	�;��) satisfying (1), (2), and (3). The essence is that
the weaker property (3) replaces (z) fromM0. Consider also the subcategoryP of
the category of morphisms of Cov X with � 2 P iff 	� 2 C. It can be viewed as
a subcategory ofM with the inclusion denoted by i:P !M.

DEFINITION 2.3.1. Let �:M! P be the functor determined by

– 	�(�) = 	�,
– ��(�)(x) = ��(�(x)).

Functoriality of the construction follows from property (3) of morphisms inM.

There are two functorial projections, �1:M ! C, � 7! 	�, and �2:M !
Cov X , � 7! ��. The same notation will be used for similar �1:P ! C, �2:P !
Cov X .

LEMMA 2.3.2. The induced map of homotopy limits

{�: holim
 ����
�2(P)

(N ^KR)! holim
 ����
C

(N ^KR)

is a weak homotopy equivalence.
Proof. Since {: C ,! �2(P) is cofinal in the classical sense, the Modified Cofi-

nality Lemma 1.1.6 applies.

PROPOSITION 2.3.3. Suppose�2:M! CovX is an epimorphism. In particular,
the inclusion i = ` � |: C ,! Covis X is cofinal. Then the induced map of homotopy
limits

|�: �h(X;KR) = holim
 ����
CovX

(N ^KR)! holim
 ����
C

(N ^KR)

is a weak homotopy equivalence.
Proof. Since P is a partially ordered set, we will interpret its elements as pairs:

(�; �) 2 P � C�Cov X iff � 2 C,� > �. Consider the functor�:P ! P given by
(�; �) 7! (�; �). We start by checking that� is left cofinal. So let � 2 C and suppose
(�1; �1), (�2; �2) 2 P with �1 > �, �2 > �. To prove that � # � is left filtered,
we need to exhibit (�3; �3) 2 P with �3 > � and (�3; �3) > (�i; �i), i = 1; 2. Our
choice is (�1��2; �1��2). (Notice that it is not always true that �1\�2 > �1\�2.)
The existence of equalizers in � # � is obvious, so � # � is left filtering, hence
contractible. The over categories are nonempty since (�; �) > (�; �) 2 P .
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We would like to claim that �1:M ! C and �2:M ! Cov X are both left
cofinal. The hypothesis makes every over category associated to �2 nonempty. It is
also clear that each �2 #�, � 2 Cov X , has equalizers. It will be contractible ifM
is shown to be left filtered.

Given �i:�i ! �i 2 M, i = 1; 2, consider �1 \ �2 2 Cov X . When X

is connected, (�1 \ �2)
�1(U) is uncountable for U 2 im (�1 \ �2), so there is

�aux:�aux ! �1 \ �2 2 M, where �aux is a set automorphism of X . Since x 2
(�1� �2)(x)\ (�1 \ �2)(�aux(x)), �aux can be chosen with the property �aux(x) 2
(�1 � �2)(x). This gives x 2 (�1 � �2) � �

�1
aux(x). Construct new coverings �0i =

�i � �
�1
aux 2 Cov

is X , i = 1; 2. Let � = �1 � �2 � �aux, � = �01 � �
0
2 � (�1 \ �2),

and define �:� ! � to be �aux. Now we check: (1) �(x) � (�1 � �2)(x) =
(�01 � �02)(�aux(x)), �(x) � �aux(x) � (�1 \ �2)(�aux(x)). So �:� � �. (2)
� > �1��2 > �i, � > �1 \ �2 > �i for i = 1; 2. (3) �(�(x)) � (�01��

0
2)(�(x)) =

(�1 � �2)(x) � �i(x) � �i(�i(x)) for i = 1; 2. We get the desired morphisms
�! �1, �! �2.

The projection�1:M! C is also an epimorphism on objects. Similar reasoning
shows that each over category of �1 is also left filtering. In fact, it has even simpler
structure: the pair (� > X ; � > �), where X :x 7! X for each x 2 X , is the
terminal object in �1 #�.

Now �1 and �2 are left cofinal functors. It follows also from the left filtering
property ofM and the very functoriality of the �-construction that �:M! P is
likewise left cofinal.

Now the map |� can be embedded as the bottom row of the following commu-
tative diagram:

holim
 ����
M

(N�2 ^KR) ����! holim
 ����
M

(N�1 ^KR)x??��2 x??��1
holim
 ����
Cov X

(N ^KR)
|�

����! holim
 ����
C

(N ^KR)

The vertical arrows are weak homotopy equivalences by the Cofinality Lemma.
The top arrow can be interpreted as follows. If 	:M ! M is the projection
analogous to �, restricting to �, notice that N�1 ^KR = N�2	 ^KR. So, if
denote N�2 ^KR by G( ), the top arrow is clearly

	�: holim
 ����
M

G �! holim
 ����
M

(G �	)

from the commutative square �2 �	 = { � �1.
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Consider the commutative diagram

holim
 ����
P

(N�2i ^KR)
��

�! holim
 ����
P

(N�2i� ^KR) = holim
 ����
P

(N�2	i ^KR)x??i� x??i�
holim
 ����
M

(N�2 ^KR)
	�

�������������! holim
 ����
M

(N�2	 ^KR)

Since � is left cofinal, we are done as soon as both inclusion induced maps
are shown to be weak equivalences. Notice that in the natural transformation
T :N�2� ! N�2 induced by the vertex maps ���(x) 7! ��(�(x)) all of T�,
� 2M, are homotopy equivalences by Quillen’s Theorem A. Since� � i = id, we
get the commutative diagram

holim
 ����
M

(N�2� ^KR)
T��! holim

 ����
M

(N�2 ^KR)??yi� ??yi�
holim
 ����
P

(N�2�i ^KR) = holim
 ����
P

(N�2i ^KR)

The vertical map on the left is the left inverse of �� which is a weak equivalence.
This i� and T� being weak equivalences proves that i� on the right is one, too.
Similarly, the other map i� in the previous diagram is a weak homotopy equivalence.

Remark 2.3.4. When the inclusion i of C in Cov
is X is left cofinal, there is

a reason to expect that |� is again a weak homotopy equivalence. Just as in the
case of cofinal i, the evidence comes from the Bousfield–Kan spectral sequence
(Theorem 1.1.5), since the induced homomorphisms

|�: limp

 ����
Cov X

�q(N ^KR) �! limp

 ����
C

�q(N ^KR)

of the entries in the E2-terms coincide with

(F 0 � |)�: limp

 ����
CovX

�q(N ^KR) �! limp

 ����
F 0(C)

�q(N ^KR):

Here F 0:Cov X ! CovX is the obvious extension of F :Cov X ! Cov
sX (see

2.2). It follows from the homotopy theoretic interpretation of derived limits ([10,
XI, 7.2]) and the weak equivalence

(F 0 � |)�: holim
 ����
CovX

K(�q(N ^KR); n) �! holim
 ����
F 0(C)

K(�q(N ^KR); n)

that all |�p;q are isomorphisms.
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3. The Approach to Novikov Conjectures

This section restates Theorem 2 from the Introduction in a more precise form.
In particular, the map is defined between the homotopy limits in the statement
which is expected to be a weak homotopy equivalence. Thus Sections 3.1–3.3 are
a sketch of the approach of Carlsson and Pedersen to Novikov conjectures. Then
we describe the version of this approach which we actually use in this paper.

3.1. CONTINUOUS CONTROL AT INFINITY

First, we copy some definitions from [16]. Let E be a topological space, and let
R[E]1 denote the free R-module generated by E � N. The category B(E;R) is
defined to consist of submodulesA ofR[E]1 such that denotingA\R[x]1,x 2 E,
by Ax we have A = �Ax, each Ax is a finitely generated free R-module, and
fx : Ax 6= 0g is locally finite inE. Morphisms are allR-module homomorphisms.
Note that a �-action onX always induces a �-action on B(E;R). Also B(E;R) is
a small additive category.

IfX is a topological space,Y a subspace,E = X�Y ,U � X is any subset, and
A 2 B(E;R), defineAjU by (AjU)x = Ax if x 2 U �Y and 0 if x 2 X�U�Y .
A morphism �:A! B inB(E;R) is called continuously controlled at y 2 Y if for
every neighborhoodU of y inX there is a neighborhood V so that �(AjV ) � BjU
and �(AjX � U) � BjX � V .

Now let T be an open subset of X and p:T ! K be a map with continuous
pjY \ T . A morphism �:A ! B 2 B(E;R) is p-controlled at y 2 Y \ T if for
every neighborhood U of p(y) in K there is a neighborhood V of y in X so that
�(AjV ) � Bjp�1(U) and �(AjX � p�1(U)) � BjX � V .

The category B(X;Y ;R) has the same objects as B(E;R) and morphisms
which are continuously controlled at all y 2 Y . The categoryB(X;Y; p;R) has the
same objects as B(E;R) and morphisms which are continuously controlled at all
y 2 Y �T and p-controlled at all y 2 T \Y . These are small symmetric monoidal
categories, so there are corresponding nonconnectiveK-theory spectra defined as
in Section 1.2. We will use the notation K( ) for K(B( )).

3.2. PROOF OF THEOREM 1

Here is the general scheme of the approach used in [16] to prove Theorem 1 from
the Introduction. Let C bX be the cone on bX with bX = bX � f1g, Y = bX � E�,
and p: bX � (0; 1) ! bX be the projection. The map �:C bX ! � bX collapsing bX
induces a �-equivariant functor

B(C bX;CY [ bX; p;R) ���! B(� bX;�Y; p;R)

which in its turn induces a map of spectra

S = 
K(C bX;CY [ bX; p;R) ���! T = 
K(� bX;�Y; p;R):
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Next they show that there is a commutative diagram

B�+ ^KR
�

����! K(R�)??y' ??y'
S�

���
����! T �

Recall that the fixed point spectrum of a �-spectrumA can be defined asA� =
Map�(S

0;A+). The homotopy fixed point spectrum can be defined analogously:
Ah� = Map�(E�+;A+). The collapse �:E�+ ! S0 induces ��:A� ! Ah�.
Such maps make the next diagram commute:

S�
���

����! T �??y�� ??y
Sh�

�h��
����! T h�

It is shown in [16] that ��:S� ' Sh� and �h�� :Sh� ' T h�. Putting the two
diagrams together we see that this is enough to make � a split injection. Note
that very little is known about the map T � ! T h�, but only being a part of the
commutative diagram is required of it.

3.3. PROOF OF THEOREM 2

Now let us consider the circumstances of Theorem 2 following [17]. Consider
another map � with domain C bX which contracts the subspace CY and produces
the reduced cone eCE�+. It induces a �-equivariant functor

B(C bX;CY [ bX; p;R) ���! B( eCE�+; E�+;R):

Notice that each morphism from B(C bX;CY [ bX; p;R) � B(X�R) is controlled
at E�+. This functor induces a map of spectra

S = 
K(C bX;CY [ bX; p;R) ���!R = 
K( eCE�+; E�+;R):

PROPOSITION 3.3.1. �� is a weak homotopy equivalence.

E�+ is metrizable, so, according to Theorem 1.36 of [16], R is a Steenrod
functor, and R� ' S� �! T � is again the assembly map. Also R� ' Rh� as
before. Another Steenrod functor is the Čech homology

�h(E�+;KR) = holim
 ����

U2Cov E�+

(NU ^KR);

where Cov E�+ is the category of finite rigid open coverings of E�+. The nerve
functorN :Cov E�+ ! S�SETS above lands in the category of simplicial sets. So
NU ^KR above is a simplicial spectrum (see Section 2.2).
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The support at infinity of an objectA 2 B(X;Y ;R) is the set of limit points of
fx : Ax 6= 0g in Y . The full subcategory of B(X;Y ;R) of objects with support at
infinity contained in C � Y is denoted by B(X;Y ;R)C . If U1; U2 are open sets in
E�+ then we get maps induced by inclusions:

K( eCE�+; E�+;R)U1\U2 �! K( eCE�+; E�+;R)Ui :

In general, there is a functor Int U ! SPECTRA for any U 2 Cov E�+, where
Int U is the partially ordered set of all multiple intersections of members of U
(indexed by finite subsets of Y ).

PROPOSITION 3.3.2. For a fixed U 2 CovE�+ the universal excision map

hocolim
����!
Int U

K( eCE�+; E�+;R)\Ui �! K( eCE�+; E�+;R)

is a weak equivalence.

The spectrum �R on the right is a �-spectrum. To rediscover this aspect of the
structure on the left, we can write

holim
 ����

U2Cov E�+

0@hocolim
����!
Int U

K( eCE�+; E�+;R)\Ui

1A ' �R;

where the �-action on the left-hand side is induced from the obvious action on
Cov E�+. Notice that we have used the fact that Cov E�+ is contractible in
applying Theorem 1.1.4 to holim�R.

In the proper setup (essentially sending each nonempty\Ui to a point) one gets
maps

hocolim
����!
Int U

K( eCE�+; E�+;R)\Ui �! jInt Uj ^KR:

Finally, we get the induced equivariant map of homotopy limits

�:R �! �h(E�+;KR):

This map can be viewed as a component of a natural transformation of Steenrod
functors which is an equivalence on points, hence R ' �h(E�+;KR), accord-
ing to Milnor (see [19, Lemma 3.3]. This is enough to conclude that Rh� '
�h(E�+;KR)h�.

Returning to T , there is an excision result analogous to Proposition 3.3.2.
In order to produce a natural transformation analogous to �, the covering sets
p(U) � Y must be boundedly saturated. See [17] for the construction of a map

�`:T �! � holim
 ����
�2f�g

(N� ^KR)
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for each �-closed contractible system of coverings of Y by boundedly saturated
open sets.

Again, this map is �-equivariant, so the composition induces a map

T h� �!

0B@� holim
 ����
�2f�g

N� ^KR

1CA
h�

:

Since bX is Čech-acyclic, there is a composite weak equivalence

holim
 ����

Cov( bX[CY )(N ^KR)
'

����! holim
 ����

Cov �Y

(N ^KR)

??y' x??'
holim
 ����

Cov E�+

(N ^KR)
9

����! �holim
 ����
Cov Y

(N ^KR)

There is a map

�: holim
 ����
Cov Y

(N ^KR) �! holim
 ����
f�g

(N ^KR)

induced by the inclusion of categories f�g ,! Cov Y ; it makes the ambient
diagram commutative. If � is a weak equivalence then �h� is a weak equivalence.
This would make � a split injection, since a weak equivalence would again be
factored as the composition of � with another map.

Summary 3.3.3. Given a discrete group �, the method described here calls for a
construction of a compact classifying spaceB� and an equivariant compactificationbX of the universal coverE�, i.e., an open dense embeddingE� ,! bX in a compact
Hausdorff space. The space bX itself may not be metrizable but it is required to be
acyclic in the sense that its Čech homology is that of a point. Then a convenient
metric must be introduced on E�. The action may not be small at infinity, but
the choice of a metric determines the family of boundedly saturated subsets of
Y = bX � E�. One has to make a choice of a �-invariant collection of coverings
of Y by such sets which preserves the Čech homotopy type of Y . Furthermore, the
weak homotopy equivalence of Čech homology spectra has to be realized by the
map � defined above.

3.4. MODIFICATION

The flexibility of this approach is in the freedom of choice of the metric in �X
and the system of special coverings f�g. It happens to be not enough for making
� a weak equivalence in a situation like ours when the choice of the metric is
convenient and natural but makes the family of open boundedly saturated sets in
Y = bX � �X too coarse to preserve the Čech homotopy type.
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DEFINITION 3.4.1. Let C1 and C2 be two closed subsets of Y . The pair (C1; C2)

is called excisive if there is an open subset V � bX such that C2 � C1 � V and
V \ C1 � C2. For two arbitrary subsets U1 and U2, the pair (U1; U2) is excisive
if every compact subset C of U1 [ U2 is contained in C1 [ C2 where (C1; C2) is
an excisive pair of closed subsets with Ci � Ui. A collection of subsets Ui � Y

is called excisive if every pair in the Boolean algebra of sets generated by Ui is
excisive.

It is easy to show that CovX for compact Hausdorff X consists of excisive
coverings. It turns out that this property is sufficient for the excision result like
Proposition 3.3.2 (see the proof in [17]). Our choice for f�gwill be certain excisive
coverings by boundedly saturated sets so that the category itself is contractible. This
makes possible the construction of a map similar to �` above. Since ��h(Y ;KR)
is weakly equivalent to the domain of ��:S ! T such that (��)� is the assembly
map, there must be a map

�: �h(Y ;KR) = holim
 ����
Cov Y

(N ^KR) �! holim
 ����
f�g

(N ^KR)

which completes the commutative diagram.
To create a natural target for a map from T we can ‘saturate’ the open sets

U � Y by associating to U its envelope in a Boolean algebra of boundedly
saturated subsets of Y thus mappingCov Y functorially onto the resulting category
f�g. Let us denote this functor by sat:� 7! �(�). Since sat is left cofinal, and
the construction � ; �(�) above induces a natural transformation of the functors
N�^KR! N�(�)^KR fromCov Y to S-SPECTRA, we can induce and compose
the following maps:

�: holim
 ����

�2Cov Y

(N� ^KR)
sat��! holim

 ����
�2Cov Y

N�(�) ^KR
'
 � holim

 ����
�2f�g

(N� ^KR):

This is the correct map if we make sure that the analogue of the excision result
from [17] works with f�g. It is precisely the property ofA 2 � being excisive that
we need here. This cannot be always guaranteed. However, one can often make a
more intelligent choice of the Boolean subalgebra of boundedly saturated sets in
the construction of f�g. Taking envelopes in this algebra defines all the analogues
of the maps above with all the same properties.

Now f�g may not be included in Cov Y any longer. This is why one is forced
to consider the more general situation. We will pass to a convenient intermediate
category C of Cov Y where the open covering sets have particularly nice nature so
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that it is easy to predict the saturation and see that it does not change the homotopy
type of the nerve. The passage is achieved using the following diagram.

holim
 ����

�2Cov Y

(N� ^KR)
sat�

����! holim
 ����

�2Cov Y

N�(�) ^KR
'

 ���� holim
 ����
�2f�g

(N� ^KR)

??y{� ??y ??y
holim
 ����
C

(N ^KR)
(satjC)�
����! holim

 ����
C

N�( ) ^KR
'

 ���� holim
 ����
f�0g

(N ^KR):

The vertical maps are induced by inclusions. Now the map T ! holim(N�^KR)
can be composed with the vertical map on the right, so in order to split the assembly
map we need {� and (satjC)� to be weak equivalences.

EXAMPLE 3.4.2. If there is a �-closed contractible categoryD of finite rigid open
coverings by boundedly saturated sets then it can be taken to play the role of C. In
this case sat is an identity, so only {� needs to be an equivalence, and we recover
Theorem 2 of Carlsson and Pedersen.

Our own choice of C will be explained in Section 9.1.

4. Malcev Spaces and their Compactification

We start our inductive constructions with a study of simply connected nilpotent
groups. It could culminate in a proof of the Novikov conjecture for the class NIL of
torsion-free finitely generated nilpotent groups. It is possible, however, to deal with
these groups using different approaches via reduction ([15, 29, 48]). We actually
compactify a suitable E�, and it is this construction that we are really after. We
also use this format to organize some information needed later.

4.1. MALCEV COORDINATES

Let G be a real Lie group, and g be its Lie algebra. There are several ways to
introduce a local coordinate system in a neighborhood of the identity e 2 G. If
fX1; : : : ;Xdg is a basis in g, introduce a coordinate system fu1; : : : ; udg in g by
mapping

X =
dX
i=1

uiXi 7! (u1; : : : ; ud) 2 R
d :

For the usual norm jXj = (
Pd

i=1 juij
2)1=2 in g, there exists a number � > 0

such that the exponential maps an open norm-metric ball at 0 in g injectively and
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regularly into G. The image Ue = fexpX : jXj < �g is a neighborhood of e. If
we take

xk

 
exp

dX
i=1

uiXi

!
= uk

then fx1; : : : ; xdg is a local canonical coordinate system of the first kind. Recall
that if G is a connected simply connected nilpotent group, the exponential map is
a global diffeomorphism, so the coordinate system fxig is also global.

A lattice � in a connected Lie group G is a discrete subgroup such that G=�
has finite volume. Let us begin with

THEOREM 4.1.1 (Malcev [42]). A group is isomorphic to a lattice in a simply
connected nilpotent Lie group if and only if it is finitely generated, nilpotent, and
torsion-free.

Let � be a torsion-free finitely generated nilpotent group which we embed in a
connected simply connected groupN produced by Theorem 4.1.1. This N will be
the model forE�. By Lemma 4 of [42] the subgroup� has generators f
1; : : : ; 
rg,
where r = dimN , with the three properties:

1. each 
 2 � can be written as 
 = 
n1
1 � � � 


nr
r ,

2. each subset �i = f

ni
i � � � 


nr
r g is a normal subgroup of �, and

3. the quotients �i=�i+1 are infinite cyclic for all 1 6 i < r.

LetCi = ci(t) be the one-parameter subgroup of N with ci(1) = 
i, 1 6 i 6 r.
It is easily seen that N satisfies analogues of the three properties of �:

1. N = C1 � � �Cr, and the representation of g 2 N as g = g1 � � � gr, gi 2 Ci, is
unique,

2. if Nr+1 = feg, Ni = Ci � � �Cr, 1 6 i 6 r, then Ni are Lie subgroups of N ,
dimNi = r � i+ 1, and Ni � N for 1 6 i < r,

3. Ci �= R for all 1 6 i 6 r.

If n is the Lie algebra of N then e1 = log 
1; : : : ; er = log 
r becomes a basis
in n so that each set

ni = f�iei + �i+1ei+1 + � � �+ �rerg � n

is an ideal. So f
ig produce special canonical coordinates of the first kind according
to Malcev. This system should not be confused with the canonical coordinate
system of the second kind (or Malcev coordinates); it seems that this terminology
first appeared in A. I. Malcev’s work on rigidity in nilpotent groups [42]. The
correspondences

log: g 7! log g;
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�:
rX

k=1

�kek 7!
rX

k=1

�k(0; : : : ;
k
_

1 : : : ; 0)

define diffeomorphisms between N , n and Rr and induce flat metrics in N and n

from the standard Euclidean metric in Rr .

4.2. COMPACTIFICATION

LetMi = N=Ni = C1 � � �Ci�1. Since ni is an ideal in n, for any a 2 N the Poisson
bracket [a; ei] 2 Ni+1. Denote the coordinates of p, g 2 N by �i, �i respectively,
then the coordinates �i(t) of p � g satisfy

�i = �i + �i + qi(�1; : : : ; �i�1; �1; : : : ; �i�1);

where qi are polynomials determined by the Campbell–Hausdorff formula. This
shows that if p 2 Nj then �1 = : : : = �j�1 = 0 and �k, k < j, are independent of
�j; : : : ; �r. We can conclude that p �g lies in the hyperplane (�1; : : : ; �j�1; �; : : : ; �)
parallel to Nj . So N acts from the right on the set of hyperplanes parallel to Nj .
Since the formulae are polynomial, the action is continuous. Similar arguments
apply to the left action. One can consider the equivariant enlargement of N by the
equivalence classes of rays in Mj+1 parallel to Cj .

Perform this construction inductively for all j = r; : : : ; 2. In order to visualize
and parametrize the resulting compactification �N of N , it is helpful to embed N
as (�1; 1)r � Rr in the most obvious fashion so that the orders of the coordinates
coincide and the parallelism relation is preserved. We want to consider a sequence
of certain collapses. The collapses we have in mind are performed in the boundary
of the cube Ir and its successive quotients. The first collapse contracts

f(x1; : : : ; xr�1; �) 2 I
r : 91 6 i 6 r � 1 with xi = �1g �! point:

We give this point the projective coordinates (x1; : : : ; xr�1; [). The set

f(x1; : : : ; xr�1; [) : 91 6 i 6 r � 1 with xi = �1g

is the boundary of In�1. Now we induct on the dimension of the cube. For example,
the collapse at the m-th stage can be described as

f(x1; : : : ; xr�m; �; [; : : : ; [) 2 I
r�m+1 : 91 6 i 6 r �m with xi = �1g

�! (x1; : : : ; xr�m�1; [; : : : ; [):

The process stops after r � 1 stages when the points (�1; [; : : : ; [) do not get
identified. The end result is a topological ball Br with the CW-structure consisting
of two cells of each dimension 0; 1; : : : ; r � 1 and one r-dimensional cell and a
continuous composition of collapses �: Ir ! Br. Each lower dimensional cell is
the quotient of the appropriate face in @Ir: if the face F was defined by xi = �1
then dim �(F ) = i.

This discussion proves
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PROPOSITION 4.2.1. The compactification �N is both left and right equivariant
with respect to the multiplication actions of N on itself. The orbits of the two
actions in �N = �N �N coincide with the cells in the cellular decomposition of
the boundary.

Remark 4.2.2. Our motive for Proposition 4.2.1 is, of course, that now the
restricted actions of any lattice � in N extend to �N . What makes this situation
nontrivial and does not allow one to use the spherical or ideal compactification
of the flat space N is the fact that the left and right �-actions on N cannot be by
isometries. Indeed,�would then be a crystallographic group which by a theorem of
Bieberbach would intersect the translation subgroup of Isom(Rr ) in a normal free
Abelian subgroup of finite index. This would contradict the possible nontriviality of
the semi-direct product structure on � (as in the Heisenberg groups, for example).

5. Bounded Saturation in the Boundary Sphere

5.1. GENERAL PROPERTIES OF BOUNDEDLY SATURATED SETS

For any subset K of a metric space (X; d) let K[D] denote the set fx 2 X :
d(x;K) 6 Dg which we call the D-neighborhood of K .

DEFINITION 5.1.1. Given a metric space (X; d) embedded in a topological spacebX as an open dense subset, a set A � Y = bX �X is boundedly saturated if for
every closed subsetC of bX with C \ Y � A, the closure of eachD-neighborhood
of CnY for D > 0 satisfies (CnY )[D] \ Y � A. Clearly, it is enough to consider
only those C with C \ Y = CnY \ Y .

Convention. All of the spaces we consider in this paper have the property that
if x is a cluster point of some sequence fxig then there is a subsequence fxjg
so that x is the only cluster point of fxjg. For example, this is satisfied by any
metrizable space. That the spaces from Section ?? and Section A.2 satisfy this
condition follows immediately from the definition of basic neighborhoods. When
we say that a sequence fxig converges to x and write x = limfxig, we understand
that the original sequence has been replaced by a converging subsequence.

LEMMA 5.1.2. Let S be a subset of Y which is not boundedly saturated. Then
there exists a point y 2 Y nS and a sequence fyig � X converging to y so that
fyig[D] \ S 6= ; for some D > 0.

Proof. By the hypothesis there is a closed subset K � bX with K \ Y � S

and (K \X)[D]nS 6= ; for some D > 0. Let y 2 (K \X)[D]nS. Then there
exists a sequence fyig � X converging to y with d(yi;K \ X) 6 D. Consider
K \ fyig[D]; if this set is bounded then fyig is contained in the bounded set
(K \ fyig[D])[D] � X which would make y 2 X . So there is a sequence
fzig � K \X with zi 2 K \ fyig[D] and limi!1fzig 2 K \ Y � S.
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THEOREM 5.1.3. A subset S � Y is boundedly saturated if for any closed set
C � bX with C \ S = ; and any D > 0, S \ (C \X)[D] = ;.

Proof. Apply Lemma 5.1.2 to the contrapositive statement.

Notice that the hypothesis of Theorem 5.1.3 is precisely that the complement
of S in Y is boundedly saturated. So we get

COROLLARY 5.1.4. The collection of boundedly saturated subsets of Y is closed
with respect to taking complements, finite intersections and unions. In other words,
it is a Boolean algebra of sets.

5.2. THE METRIC IN N

We must begin by identifying the metric in N with respect to which the bounded
saturation property of sets in �N will be defined. It will be not the Euclidean metric
used to construct the boundary but the left invariant Riemannian metric obtained by
introducing a suitable inner product in n. In this situation the diameter of a chosen
fundamental domain F is bounded by some number D as is also the diameter of
any �-translate of the domain.

DEFINITION 5.2.1. Let (X1; d1) and (X2; d2) be metric spaces. A quasi-isometry
is a (not necessarily continuous) map f :X1 ! X2 for which there exist constants�,
� andC such that (1) for every x2 2 X2 there exists x1 2 X1 with d2(f(x1); x2) 6
C , and (2) 1

�d1(x1; y1)� � 6 d2(f(x1); f(y1)) � �d1(x1; y1) + � for all x1, y1 in
X1.

The crucial property of our metric is that the group � with the word metric is
embedded quasi-isometrically when viewed as a subgroup of N . Our choice for F
will be the parallelogram spanned by the basis f
ig.

5.3. BOUNDED SATURATION: THE SEARCH

We develop a systematic method of looking for boundedly saturated subsets of Y .
Let Z be a left �-space with a �-invariant open dense complete locally compact
(so that bounded closed sets are compact) metric subspace Z0 on which � acts
freely, cocompactly, properly discontinuously by isometries. Then according to
Milnor for x0 2 Z

0 the embedding �: 
 7! 
 � x0 of � with the word metric into
Z0 is a quasi-isometry. In the course of the proof one constructs a compact subset
B � Z0 such that � �B =

S

2� 
B = Z0. Suppose that in addition there is a right

�-action on Z which (1) leaves Z0 invariant, (2) commutes with the left action:
(
1 � z) � 
2 = 
1 � (z � 
2) for any z 2 Z0, and (3) restricts to the right translation
action on �(�), i.e., (
2 � x0) � 
1 = (
2
1) � x0 for all 
1, 
2 2 �.
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THEOREM 5.3.1. LetL be a boundedly saturated subset of Z�Z0. Then (1) there
is a point z 2 L which is a limit of �(�), and (2) the right orbit z � � � Z � Z0 is
contained entirely in L.

Proof. (1) Take an arbitrary z0 2 L, and let fzig be a sequence of points in
Z0 with limi!1fzig = z0. Let B � Z0 be a ball of radius R centered at x0

with the property that � � intB = Z0. So the quasi-isometry constant C 6 2R.
Then fzig[2R] contains all translates of B which contain some zi, i > 1. A quasi-
isometry inverse to � can be constructed by sending z 7! 
(z) if z 2 
(z) � B. So
f
(zi) � x0g � fzig[2R]. The sequence f
(zi)g is unbounded, hence there is

z = limi!1f
(zi) � x0g � fzig[2R] \ (Z � Z0) � L:

(2) Take the word metric k-ballBk in � centered at e and act by it on f
(zi) �x0g
from the right. If b 2 Bk then d(e; b) 6 k, so d(x0; x0 �b) = d(x0; b�x0) 6 �k+�, so
d(
(zi)�x0; (
(zi)�x0)�b) = d(
(zi)�x0; 
(zi)�(x0 �b)) = d(x0; x0 �b) 6 �k+� for
any 
 2 �. So f
(zi) �x0g�Bk � f
(zi) �x0g[�k+�]. Since limi!1fzi �
g = z �

by continuity,

z � Bk � f
(zi) � x0g[�k + �] \ (Z � Z0) � L:

Letting k increase, we see that z � � � L.

This theorem indicates outlines of sets which must be very close to being
boundedly saturated, and in many cases they are such. An example might be our
own application which comes next or the case of a uniform lattice � acting on
the symmetric space compactified by the ideal boundary. The theorem correctly
suggests that each ideal point fixed by the trivial extension of the right action of �
is also boundedly saturated.

Let us now return to the situation with Z = �N where Z0 = N is given
the �-invariant metric defined above. Theorem 5.3.1 suggests that the cells from
Proposition 4.2.1 might be good candidates for boundedly saturated subsets of �N .

5.4. BOUNDED SATURATION: THE PROOF

Now we formally confirm the guess we made in Section 5.3. In the case Z0 is a
Lie group which acts on itself by left multiplication and the chosen metric is left
invariant, Theorem 5.3.1 has a much stronger analogue.

THEOREM 5.4.1. Each right Z0-orbit in ZnZ0 is boundedly saturated.
Proof. Let z 2 @Z0 and C � Z be a closed subset such that C \ (ZnZ0) � z �

Z0. Suppose there exists a numberDwith the property that (C \ Z0)[D]n(z �Z0) 6=
;. Then there is a sequence fyig � (C \Z0)[D] with the limit limi!1fyig = y =2
z � Z0. For each yi choose z0i 2 fzig such that d(yi; z0i) 6 D. Then limi!1fz

0
ig =

limi!1fzig. Also there are elements bi 2 Z0 such that z0i = yi � bi, they satisfy
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d(I; bi) = d(yi; yi � bi) = d(yi; z
0
i) 6 D. This infinite sequence has a cluster b in

the D-ball BD � Z
0. From the continuity of the right action we have

z � b = limi!1fzig � b = limi!1fzi � big = limi!1fyig = y

which contradicts the assumption.

Since every subset of �N is right N -invariant, we have

COROLLARY 5.4.2. Each cell in the cellular decomposition of �N from Sec-
tion 4.2 is boundedly saturated.

5.5. CUBICAL CELLULAR DECOMPOSITIONS

Let Ir = [�1; 1]r be the r-dimensional cube embedded in Rr . It has 2n vertices
indexed by various r-tuples with entries either 1 or �1. Let us denote this set by
V(�1). We also say that V(�1) is derived from I(�1) = f�1g and write this as
V(�1) = Ir(�1). Now define the following subsets of I:

I(0) = f�1; 0; 1g; I(1) = f�1;� 1
2 ; 0;

1
2 ; 1g; : : : ;

where

I(i) =

�
�1; : : : ;

k

2i
;
k + 1

2i
; : : : ; 1

�
; k 2 Z; �2i 6 k 6 2i;

for i 2 N. We also get the corresponding derived subsets of Ir:

V(0); V(1); : : : ; V(i) = fvi(s1; : : : ; sr)g = Ir(i); : : : ;

where

vi(s1; : : : ; sr)
def
=

�
s1

2i
; : : : ;

sr

2i

�
; sj 2 Z; �2i 6 sj 6 2i:

At each stage V(i) is the set of vertices of the obvious cellular decomposition of Ir,
where the top dimensional cells are r-dimensional cubes with the j-th coordinate
projection being an interval�

kj

2i
;
kj + 1

2i

�
� I; 1 6 j 6 i:

These cells can be indexed by the n-tuples f(k1; : : : ; kj ; : : : ; kr) : �2i 6 kj < 2ig,
the coordinates of the lexicographically smallest vertex, 2(i+1)r of the r-tuples at
all.

These decompositions behave well with respect to the sequence of collapses
from Section 4.2 and induce cellular decompositions of the result from the (�1)-st
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derived decomposition of Ir and the corresponding CW-structure in Br. We will
refer to this isomorphism of CW-structures as �: @Br ! �N .

There are cubical analogues of links and stars of the usual simplicial notions.
Thus the star of a vertex is the union of all cells which contain the vertex in
the boundary. The open star is the interior of the star. For the i-th derived cubi-
cal decomposition, the open star of the vertex vi(s1; : : : ; sr) will be denoted by
Staro(vi(s1; : : : ; sr)). These sets form the open star covering of Ir.

By vertices in �N we mean the image��(V(n) \@I
r). Let v 2 ��(V(n) \@I

r)
then

Staro((��)�1(v) \ V(n)) =
[

vn2V(n)
��(vn)=v

Staro(vn)

is an open neighborhood (the open star) of (��)�1(v), and, in fact,

Staro
n(v)

def
= ��(Staro(��1��1(v) \ V(n)))

is an open neighborhood of v which we call the open star of v. The map �� is
bijective in the interior of Ir, so Staro

n(v) can be defined by the same formula for
v 2 ��(V(n) \ int Ir).

6. Borel–Serre Enlargements and their Compactification

6.1. THE BOREL–SERRE ENLARGEMENT

LetG = G(Q) be a semi-simple algebraic subgroup of GLn(Q) and � be an arith-
metic subgroup ofG. It is a lattice the real Lie groupG(R) and acts (not cocompact-
ly) on the symmetric space of maximal compact subgroupsX = G(R)=K so that
X is a model for E� if � is torsion-free. Borel and Serre ([8]) form a contractible
enlargement �X � X which depends only on the Q-structure ofG so that the action
of � extends to �X . The space �X is another model for E� but now the action is
cocompact.

We discuss the two cases k = Q and R simultaneously. Denote by Pk(G) the
set of parabolic k-subgroups ofG. Let P 2 Pk(G), and let bSP denote the maximal
k-split torus of the center bCP of the Levi quotient bLP , and bAP = bSP (R)0 . (An
object associated to the reductive Levi quotient bLH rather than the group H itself
will usually indicate this by wearing a ‘hat’.) To each x 2 X is associated the
Cartan involution �x ofG that acts trivially on the corresponding maximal compact
subgroup (see [8]). There is a unique �x-stable lift �x: bLP (R) ! P (R) which gives
the �x-stable lifting AP;x = �x( bAP ) of the subgroup bAP .

DEFINITION 6.1.1. The geodesic action of bAP on X is given by a � x = ax � x,
where ax = �x(a) 2 AP;x is the lifting of a 2 bAP .
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Let bTG be a maximal k-split torus of bLG= bCG and b�G be the system of positive
simple roots with respect to bTG. There is a lattice isomorphism � 7! P� between
the power set of b�G and the set of standard parabolic k-subgroups of G.

Now X can be viewed as the total space of a principal bAP -bundle under

the geodesic action, and bAP can be openly embedded into (R�+)
card(b���(P )) viabAP 7! Rcard(b���(P )). Let �AP be the ‘corner’ consisting of bAP together with

positive card( b� � �(P ))-tuples where the entry 1 is allowed with the obvious

topology making it diffeomorphic to (0;1]card(b���(P )). Now bAP acts on �AP ,
and the corner X(P ) associated to P is the total space of the associated bundle
X �bAP

�AP with fiber �AP . Denote the common base of these two bundles by

e(P ) = bAP nX . In particular, e(G0) = X .

DEFINITION 6.1.2. The Borel–Serre enlargement

�Xk =
G

P2Pk(G)

e(P )

has a natural structure of a manifold with corners in which each corner X(P ) =F
Q�P e(Q) is an open submanifold with corners. The action ofQ(k) onX extends

to the enlargement �Xk. The faces e(P ),P 2 Pk(G), are permuted under this action.

Remark 6.1.3. When B is a Borel R-subgroup of G, we have the Iwasawa
decomposition G(R) = K � AB � NB(R) (see [46, Theorem 3.9]). Then X �
AB � NB(R), and the geodesic action of AB on X coincides with multiplication.
The quotient e(B) can be viewed as the underlying space of the nilpotent group
NB(R).

The main result of Borel and Serre about this construction is that �XQ is con-
tractible, the action of � on �XQ is proper, and the quotient �n �XQ is compact. So,
indeed, �XQ is the newE�we can use. The space bX to be constructed in Section ??
will compactify �XQ.

DEFINITION 6.1.4 (Zucker [59]). Let qP :X ! e(P ) denote the bundle map.
For any open subset V � e(P ) a cross-section � of qP over V determines a
translation of V from the boundary of �Xk into the interior X . For any t 2 bAP

put bAP (t) = fa 2 bAP : a� > t� for all � 2 b���(P )g. For any cross-section
�(V ), a set of the form cW (V; �; t) = bAP (t) � �(V ) is called an open set defined
by geodesic influx from V into X .

There is a natural isomorphism��: bAP (t)�V �= cW (V; �; t) which extends to a
diffeomorphism ���: �AP (t)� V �=W (V; �; t). Now W (V; �; t) is a neighborhood
of V in �X with ���(f(1; : : : ;1)g � V ) = V . This is an open neighborhood
defined by geodesic influx from V into X .
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EXAMPLE 6.1.5 ( �X(SL2)). The hyperbolic planeX can be thought of as the open
unit disk E in C or as the upper half-plane H . Elements of SL2(Q) act on H from
the left as Möbius transformations. The action extends to the hyperbolic boundary
@H = R [ f1g. The models E and H are related via the biholomorphic Cayley
mapping H ! E , z 7! (z� i)=(z+ i). The rational points on the unit circle @E are
the image of Q � R � @H . The proper Q-parabolic subgroups P are the stabilizers
of the rational points p in @E . All of them are Borel subgroups.

For each P the positive reals � 2 R+ act on X by translations of magnitude
log� along hyperbolic geodesics in the direction of the cusp p. This is the geodesic
action. Each geodesic 
 can be completed to a half-line by adding a limit point
e
 in the positive direction of the R+ -action which extends trivially to e
 . Now
X(P ) = X [ e(P ), where e(P ) is a copy of R ‘at’ p which parametrizes the
geodesics converging to p, and �X =

S
P X(P ), where P 2 PQ(SL2).

Given a point and an open interval y 2 V � e(P ), the restriction of a cross-
section of the principal bundle X ! e(P ) to V determines an open neighborhood
W of y in X(P ) defined by geodesic influx from V into X , i.e., W consists of
all points on geodesics connecting the image of the cross-section to V including
the latter but not the former. This description makes it clear that �X is a Hausdorff
space. Every g 2 G acts as a Möbius transformation on X and sends a geodesic
converging to a rational point to another hyperbolic geodesic. If g 2 � � SL2(Q)
then the new geodesic converges to a rational point and thus defines g � y 2 �X .

6.2. COMPACTIFICATION OF E�

The construction performed here can be compared to other compactifications of a
symmetric space X of Martin, Satake and Furstenberg, Karpelevič, and the ideal
compactification. Our bX also contains �X as an open dense subspace. This gives it
more algebraic flavor than is present in (at least the original formulations of) the
other constructions.

The corner X(P ) can be constructed for any parabolic subgroup of G defined
over R (see [8]). This means that instead of �X = �XQ we can obtain a larger
space �XR =

S
P X(P ), where P ranges over all proper R-parabolic subgroups. In

general, there may appear complications in the way �XQ and �XR fit together arising,
for example, from the fact that the Q-rank of G may not be equal to the R-rank.
Restricting our attention to the case of rankRG = 1 (which we assume from now
on) avoids such phenomena.

For an arithmetic subgroup � of G(Q) and any Borel subgroup B 2 BQ,
�B = �\B(Q) is the stabilizer of e(B). If we write the Langlands decomposition
as B(R) = M(R) � A � N(R) then �B � M(R) � N(R). Since in our case � is
torsion-free, �B = �N = � \N(Q).

PROPOSITION 6.1.6. �N is a uniform nilpotent lattice in N .
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This is precisely the property called admissibility in [30], and our � are proved
to be always admissible in [30, Theorem 5.3].

We start by compactifying each e(B), B 2 BR, � \ B(R)-equivariantly, then
provide the new points with certain neighborhoods which will form a part of the
basis for the topology on bX . Recall Remark 6.1.3. The lattice �\N acts onN via
left multiplication. We refer to [33, Lemma (7.8)] and the preceeding discussion for
the verification that this is, in fact, the action of �B on the stratum e(B). Thus the
material of Section 4 becomes relevant, and e(B0) corresponding to the standard
Borel subgroup B0 may, indeed, be compactified �B0-equivariantly by �N .

The conjugation action ofG(R) permutes the Borel–Serre strata e(B), soG(R)
also acts on the disjoint union of the compactifications �(B) = �(e(B)), i.e., on

�X
def
= �(B0)�B0(R)G(R):

Warning. �X comes with the identification topology which we are going to use
in the ensuing construction, but it will not be the subspace topology induced from
the resulting topology on bX .

DEFINITION 6.1.7. bX = �XR [ �X = X t �X .

The topology is introduced à la Bourbaki. We are referring to

PROPOSITION 6.1.8 ([9, Proposition 1.2.2]). Let X be a set. If to each x 2 X

there corresponds a set N (x) of subsets of X such that (1) every subset of X
containing one from N (x) itself belongs to N (x), (2) a finite intersection of sets
from N (x) belongs to N (x), (3) the element x belongs to every set in N (x), (4)
for any N 2 N (x) there is W 2 N (x) such that N 2 N (y) for every y 2 W ,
then there is a unique topology on X such that, for each x 2 X ,N (x) is the set of
neighborhoods of x.

By a neighborhood of a subset A in a topological space they understand any
subset which contains an open set containing A.

The space �XR is the R-Borel–Serre construct and has the topology in which
each cornerX(B) is open. For y 2 �XR letN (y) = fO � bX : O contains an open
neighborhood of y in �XRg.

Notation. Given an open subsetU � �(B), letO(U) = q�1
B (V ), the total space

of the restriction to V = U \ e(B) of the trivial bundle qB over e(B) with fiber
AB . If U is any open subset of �X , let

O(U) =
[

B2PR

O(U \ e(B)):

In either case define C(U) = fz 2 �XR : there is O 2 N (z) such that O \X �
O(U)g [ fz 2 �Xn �XR : there is an open U 0 � �X such that z 2 U 0 and
O(U 0) � O(U)g.
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Now for y 2 �Xn �XR, let N (y) = fO � bX : there is an open set U � �X

containing y with C(U) � Og. This defines a system of neighborhoods N (y) for
any y 2 bX . For a subset S � bX let N (S) = fO � bX : O 2 N (y) for every
y 2 Sg and call S open if S 2 N (S). The following lemma is elementary.

LEMMA 6.1.9. (1) If B 2 BR and U � �(B) is an open subset then C(U) is open
in bX . (2) If B 2 BR, and U1, U2 � �(B) are open subsets, then C(U1) \ C(U2) =
C(U1 \ U2).

THEOREM 6.1.10. The open subsets of bX form a well-defined topology in bX .
Proof. We need to check that the four characteristic properties from Proposition

6.1.8 are satisfied byN (x),x 2 bX . (1) and (3) are clear from definitions. (2) follows
from Lemma 6.1.9 (2). Given any N 2 N (x), x 2 �(B), there is U 2 �(B) such
that C(U) � N . TakeW = C(U). By Lemma 6.1.9 (1),N 2 N (y) for any y 2W .
Thus (4) is also satisfied.

Remark 6.1.11. If � is an arithmetic subgroup ofG(Q), it is immediate that this
compactification is �-equivariant. In fact, the action of G(R) on X extends to bX
which is in contrast to the fact that this action does not extend to �X .

EXAMPLE 6.1.12 (Arithmetic Fuchsian Groups). Consider an arbitrary proper par-
abolic R-subgroup P of G = SL2. It acts on X just as the Q-subgroups stabilizing
a point p(P ) in @E , i.e., P permutes geodesics abutting to p(P ). Attach a line
at p(P ) parametrizing these geodesics; this is the general construction of corners
X(P ) from ([8, Section 5]) in the case k = R. If P fixes a rational point then
X(P ) = �XQ. Complete each stratum: now �(P ) = e(P ) [ f�1;+1g. The
resulting set is bX in which every X(P ) is declared to be open. So typical open
neighborhoods of z 2 e(P ) in bX are the open neighborhoods of z in X(P ). Given
a line e(P ) and one of its endpoints y, a typical open neighborhood of y consists
of

– y itself and an open ray in e(P ) asymptotic to y,
– an open (Euclidean) set U in E bounded by the hyperbolic geodesic 
 abutting

to p(P ) representing the origin of the ray in e(P )—the one which is the union
of geodesics representing other points of the ray,

– points in various e(B), B 2 PR, such that p(B) is on the arc in @E connecting
p(P ) with p(R), the opposite end of 
, which are represented by geodesics
with a subray inside U ,

– each endpoint of the corresponding �(B) if B 6= P , R, and
– the endpoint of �(R) which is the limit of a ray in e(R) contained in the set

from (3).

With the topology on bX generated as above, the subspace X � bX has the
hyperbolic metric topology, and �X = bX �X is simply S1 � I with an analogue
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of the lexicographic order topology ([52, Exercise 48]). In terms of the description
of the lexicographic ordering on the unit square I�I given in [52], the analogue we
refer to is the quotient topology on S1 � I associated to the obvious identification
(0; y) � (1; y) for all y 2 I . In particular, �X is compact but not separable and,
therefore, not metrizable.

7. Topological Properties of bX
7.1. SOME GEOMETRIC PROPERTIES OF bX
The space bX is not metrizable and, therefore, has no geometry in the usual sense.
On the other hand, the geometry of the spherical compactification "X with the
ideal boundary @X is well understood (see [4]). The goal of this section is to relate
Covs bX to Covs("X).

The first two lemmas are proved in the following generality: let G be a semi-
simple linear algebraic Q-group with equal Q- and R-ranks.

LEMMA 7.1.1. Let qB:X ! e(B) be the Borel–Serre bundle associated to a
minimal parabolic subgroupB 2 BR(G). Consider a compact set C � e(B) and
the restriction of qB to C with the total space qBjC . Then the closure of qBjC in
"X consists of the union of qBjC with apartments at infinity @A, whereA = q�1

B (c)
for some c 2 C .

Proof. Let y 2 cl(qBjC) and fyig be a sequence of points in qBjC converging
to y. If y 2 X then y 2 qBjC by compactness of C .

Consider y 2 cl(qBjC)nX , pick a section � of qB , and introduce the following
notation: �yi = �(qB(yi)), z = limi!1 qB(yi), �z = �(z). Let 
 be the unique unit
speed geodesic ray from �z asymptotic to y, 
i be the unit speed geodesic from �z to
yi, and �i be the geodesic from �yi to yi.

If �i is a sequence of geodesic rays in X , it is said to converge to a geodesic ray
� if �(t) = limi!1 �i(t) for every t 2 [0;1). The geodesic segments 
i (or their
extensions) do converge to 
 (see [4], 3.2), i.e., limi!1 d(
i(t); 
(t)) = 0. On the
other hand, we can also claim that

lim
i!1

d(�i(t); 
i(t)) = 0:

Proof of the claim. Let ��i and 
�i be the unit speed geodesics from yi to
�yi and �z respectively, then �i(t) = ��i (d(yi; �i(t))), 
i(t) = 
�i (d(yi; 
i(t))) =

�i (d(yi; �i(t)) + �i), �i 2 R. Let M = minfd(yi; �yi); d(yi; �z)g. Without a loss
of generality we can assume that M = d(yi; �yi) so that �i � 0. The geo-
desic bicombing of X is bounded, so there are constants k1 and k2 such that
d(��i (s); 


�
i (s)) 6 k1d(�yi; �z) + k2 for any 0 6 s 6 M . In fact, we can do better

and use k1 = 1, k2 = 0. Indeed, recall Toponogov’s definition of nonpositive



NOVIKOV CONJECTURES AND LARGE ACTIONS AT INFINITY 351

curvature ([4]). Now

d(�i(t); 
i(t+ �i)) 6 d(�yi; 

�
i (M))

6 d(�y0i; 

�
i (M)0) 6 d(�y0i; �z

0) = d(�yi; �z);

where the primes denote the corresponding points in the comparison triangles. By
the triangle inequality,

d(
i(t+ �i); 
i(t)) = j�ij = jd(yi; �yi)� d(yi; �z)j 6 d(�yi; �z);

thus d(�i(t); 
i(t)) 6 2d(�yi; �z), and

lim
i!1

d(�i(t); 
i(t)) 6 2 lim
i!1

d(�yi; �z) = 0:

This proves the claim.
We finally get limi!1 d(�i(t); 
(t)) = 0. Since the fibers q�1

B (c), c 2 C , are
totally geodesic, qB(�i(t)) = qB(yi) for all times t. So qB(
(t)) = limi!1 qB(yi) =
z. We conclude that 
(t) 2 q�1

B (z) for all t, thus y 2 @q�1
B (z), z 2 C .

The reverse inclusion of the sets is obvious.

Recall that e(B) �= NB (Remark 6.1.3). Derived cubical cellular decomposi-
tions of Ir with vertices V(n) induce cellular decompositions and open coverings
of �N . The open coverings are composed of the images of open stars of vertex
inverses in Ir. The map we have in mind is ��: Ir ! N , where � is the extension
of the map from Section 5.5. We fix the choice of��made forB from now on. The
vertices in �N are defined to be the set��(V(n)). The stars of �N in this family of
cellular decompositions form a nested sequence of regular neighborhoods of the
boundary denoted by

Regn(B) = Regn(�NB)
def
=

[
v2��(V(n))

v2�NB

Staro
n(v):

Recall also the notion of geodesic influx neighborhoodW (V; �; t) from Definition
6.1.4. Given a point x0 2 X , there is a horocycle NB � x0 passing through x0

parametrizing the orbits of bAB . This defines a section �: e(B) ! X of qB with
(� � qB)(x0) = x0. Let us denote the corresponding geodesic influx neighborhood
W (e(B); �; 0) by WB(x0).

LEMMA 7.1.2. Given any minimal parabolic subgroup B 2 BR(G) and an open
neighborhood U of �(B) in bX , then U contains the restriction to X of an open
neighborhood V (B) in "X of the corresponding Weyl chamber at infinityW (B) �
@X .
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Proof. Since "(B) is compact, there is a neighborhood WB(x0) of e(B) con-
tained in U . For the same reason there is an integer n large enough so that
C(Staro

n(v)) � U for every vertex v 2 ��(V(n) \ @I
r). Thus

�(B) �
[
v

C(Staro
n(v)) = C(Regn(B)) � U:

It is obvious directly from the definition that C(Staro
n(v)) is an open neighborhood

of Staro
n(v) \ �(B). We obtain a new open neighborhood of �(B) in bX by taking

the union WB(x0) [ C(Regn(B)) � U which we denote by Vn(B; x0) or simply
Vn(B) when the choice of WB(x0) is not important.

Notice that O(Regn(B)) = C(Regn(B)) \X is the union of all chambers and
walls in q�1

B (z), z 2 Regn(B) \ e(B), based at �(z). Similarly, WB(x0) is the
union of all chambers based at �(z), z 2 e(B), and asymptotic to W (B) �
@X . So XnVn(B) consists of chambers and walls based at �(z) in the flats
q�1
B (z), z 2 �(B)nRegn(B), and not asymptotic to W (B) � @X . This is
q�1
B (�(B)nRegn(B))nWB(x0). By Lemma 7.1.1 the closure of this set in "X

consists of Weyl chambers and walls in the flats q�1
B (z), z 2 �(B)nRegn(B), and

the corresponding apartments in @X excluding W (B) and the chambers asymp-
totic to it. So, the open complement V (B) = Vn(B) of this set contains W (B).
Finally, Vn(B) \X = Vn(B) \X � U .

LEMMA 7.1.3. Assume that rankRG = 1. Consider a subset of X [ @X of the
form Vn(B). Then Vn(B) \ @X consists of chambers at infinity W (P ) such that
�(P ) has a neighborhoodN � bX whose restriction N \X � O(Regn(B)).

Proof. First, let P 2 BR have the property that W (P ) 2 Vn(B) \ @X . In this
case the claim reduces to finding some Regm(P ) so that

O(Regm(P )) = C(Regm(P )) \X � O(Regn(B)):

This follows from the fact that the map of power sets �B;P :P(e(B)) ! P(e(P ))
defined by �B;P (S) = qP (q

�1
P (S)) is relatively proper (the image of a compact

set is relatively compact). Let K � e(B) be a compact subset and fyig � e(P )
a sequence such that L = limi!1fyig 2 �(P ) and q�1

P (yi)nO(CK) 6= ; for
all yi. The endpoints of each geodesic q�1

P (yi) are W (P ) and another point zi 2
CVn(B) � @X . SinceVn(B) is open, z = limi!1fzig 2 CVn(B). This represents
L as the class of the geodesic asymptotic to z and W (P ) which contradicts the
hypothesis. The union ofO(Regm(P )) and a suitable geodesic influx neighborhood
of e(P ) is a required neighborhoodN of �(P ).

Now suppose that �(P ) has a neighborhood N described in the statement.
Then there is a section � of qP such that all Weyl chambers based at �(�), � 2
e(P ), and asymptotic to W (P ) are contained in the neighborhood, and, therefore,
miss XnVn(B) completely. It is now clear that no Weyl chamber in XnVn(B) is
asymptotic to W (P ), so W (P ) � O(Regn(B)).
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COROLLARY 7.1.4. Using the notation above, if the parabolic subgroupP 2 PR
has the propertyW (P ) � Vn(B) then �(P ) � Vn(B).

Proof. This is a corollary of the proof above. One can see immediately that
e(P ) � Vn(B). For y 2 �(P ), y 2 C(Regm(P )) which is of the form constructed
in Lemma 7.1.3. In other words, for P 0 2 PR with W (P 0) � Vm(P ) we get
O(Regk(P

0)) � O(Regm(P )). So C(Regm(P )) � C(Regn(B)), hence �(P ) �
Vn(B), and, finally, �(P ) � Vn(B).

LEMMA 7.1.5. If fUP g, P 2 PR, is a collection of open sets in bX with each UP
containing "(P ) whose restrictions cover bX � X , then the sets V (UP ) can be
chosen so that they cover @X .

Proof. Clear, since every point of @X belongs to a well defined Weyl chamber.

7.2. THE HAUSDORFF PROPERTY

The subspace �XR � bX is open, so it suffices to check the Hausdorff property for x,
y 2 �Xn �XR. If x, y 2 �(B) for some B 2 BR then they can be separated by open
neighborhoods Ux, Uy � �(B) with O(Ux) \ O(Uy) = ; which get completed
to open neighborhoods C(Ux) \ C(Uy) = ;. So suppose x 2 �(B1), y 2 �(B2),
B1 6= B2. The points W (B1) and W (B2) are limit points of a unique apartment
which projects to x0 2 e(B1), y0 2 e(B2). Choose n 2 N large enough so that
x0 =2 Regn(B1), then C(Regn(B1))\�(B2) = ;. Now choosem 2 N large enough
so that Regm(B2) \ qB2(O(Regn(B1)) = ;. The existence of such m follows
from the same argument as in the proof of Lemma 7.1.3. Now C(Regn(B1)) and
C(Regm(B2)) are disjoint open neighborhoods of x and y respectively.

Remark 7.2.1. Let �Xb(k) = X [
S
B2Bk

e(B) where all of X(B) are open.
The construction from Section ?? can be performed with the Borel subgroups in
any split rank linear algebraic group. The strata e(B) get compactified to �(B) �=
�NB � �bX . Denote �Xb(R) [ �bX by bXb.

It is not true that bXb is always Hausdorff. This has to do with rank, and the
simplest example is bXb(SL3). Here each maximal 2-dimensional flat consists of
six chambers and six walls. Pick two walls which are in opposition: they lie on
a geodesic 
 through the base point and determine two walls W (P1), W (P2) at
infinity. If z1 = qP1(
) 2 e(P1) then let zu1 2 RuP1(R) be the first coordinate
projection of e(P1) = RuP1(R) � be(P1), where Ru denotes the unipotent radical,
and be(P1) is the reductive Borel–Serre stratum (see [58, 59] or [33, Section 7]).
The point zu2 2 RuP2(R) is defined similarly. The two points are the limits of 
 in
�X . It turns out that the points of fzu1 g� be(P1) and fzu2 g� be(P2) match bijectively

in this manner.
By [8, Sections 2.8, 3.10, 5.2, 7.2(iii)], for any P 2 PR the principal RuP (R)-

fibration�P extends to a principal fibration ��P;R: e(P )
R
�! be(P )

R
. Since be(P )

R
=
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�XR for X = SL2(R)=SO2(R), each level gets compactified as in Example 6.1.12.
In particular, fzui g � be(Pi), i = 1; 2, embed in the closures of the corresponding
strata. It is now easy to see that the bijective correspondence described above
extends to these enlargements and to find points yi 2 fzui g � (be(Pi) � be(Pi)) so
that any two neighborhoods of y1 and y2 in the respective enlargements contain
some points xi 2 fzui g � be(Pi) which are matched. Equivalently, y1 and y2 are
inseparable in bXb(SL3).

In order to construct the correct bX(SL3) and introduce a compact Hausdorff
topology, one might want to compare bX with the Satake compactification of X .
See Section ?? for an illustration. Complete details are contained in [32].

7.3. COMPACTNESS

Given any open subset U of bX containing bX � X , since such a subset would
contain �(P ) for every P 2 PR, its restriction to X would also contain an open
neighborhood in X [ @X of the corresponding Weyl chamber at infinity W (P )
according to Lemma 7.1.2. As before, this says that U \X is the restriction of an
open subset of X [ @X containing @X . By compactness of @X , U \X contains
a collar on @X .

Now given any open covering U of bX , let fU1;P ; : : : ; UkP ;Pg � U be any finite
subcollection which covers the compact subspace �(P ) for P 2 PR. The sets �(P )
cover bX � X . Since the unions UP =

S
i Ui;P contain the corresponding �(P )

individually, they together cover bX �X . We now apply Lemma 7.1.2 to find open
neighborhoods Y (P ) of "(P ) inside UP and open neighborhoods V (P ) of W (P )
in "X which have Y (P ) \ X = V (P ) \ X . By Lemma 7.1.5 the sets V (P ),
P 2 PR, cover @X .

Choose a finite subcollection fPig, Pi 2 PR, i = 1; : : : ;m, such that fV (Pi)g
still cover @X . The first paragraph shows that their union must contain a collar
on @X . The complement of this collar in X [ @X is closed and contained in X ,
hence is compact. Let Um+1; : : : ; Un be a finite collection of sets from U such that
Um+1 \X; : : : ; Un \X cover the complement of the collar. Each Weyl chamber
W (P ) is contained in at least one set V (Pi). By Lemma 7.1.3 the corresponding
set UPi in bX contains "(P ). This means that fUPig, i = 1; : : : ;m, cover bX �X .
Since

S
i(UPi\X) �

S
i(V (Pi)\X), the setsUP1 ; : : : ; UPm ; Um+1; : : : ; Un coverbX . In other words,

fU1;P1 ; : : : ; UkP1 ;P1 ; : : : ; U1;Pm ; : : : ; UkPm ;Pm ; Um+1; : : : ; Ung

is a finite subcovering of U .

COROLLARY 7.3.1. The space bX is a compactification of �X , i.e., a compact
Hausdorff space containing �X as an open dense subset. In fact, the combination
of the Hausdorff property and compactness makes bX normal.
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7.4. ČECH-ACYCLICITY

Since the continuous map f : bX ! "X defined by

x 7�!

(
x if x 2 X ,

W (P ) if x 2 "(P ),

has contractible image and point inverses, it would be desirable to have an analogue
of the Vietoris–Begle theorem for the modified Čech theory. We prove a weaker
but sufficient

THEOREM 7.4.1. If f :X ! Y is a surjective continuous map with f�1(y) con-
tractible for each y 2 Y , and Y is Chogoshvili-acyclic for any Abelian coefficient
group, then

�f : �h(X;KR) �! �h(Y ;KR)

is a weak homotopy equivalence. So both X and Y are Čech-acyclic.

The proof is an amalgam of results from [5, 6, 20, 36, 51]. The construction
of Chogoshvili is the one we have sketched in Section ??; it extends the Steenrod
homology theory on the subcategory of compacta. Berikashvili ([5, Theorem 2])
proved the uniqueness of such an extension

h�( ; ): COMPHAUS2 �! ABGROUPS

when it satisfies the following three axioms.
Axiom A. If (X;K) is a compact Hausdorff pair then the projection (X;K)!

(X=K; point) induces an isomorphism h(X;K)! h(X=K; point).
Axiom B. For the diagram f(Sn� ; point); ���g, where Sn� is a finite bouquet of

n-dimensional spheres and ��� :Sn� ! Sn� is a mapping sending each sphere of the
bouquet either to the distinguished point or homeomorphically onto a sphere in the
target, there are isomorphisms

hi

0@ lim
 ����
�

f(Sn� ; point); ���g

1A �= lim
 ����
�

fhi(S
n
�; point); ���g:

Let E = (E1; : : : ; Ek) 2 A be a finite decomposition as in Section ??. Let NE
denote the nerve of the finite closed covering E = (E1; : : : ; Ek). Then

N(X)
def
= lim
 ����
E2A

NE ; Np(X)
def
= lim
 ����
E2A

N
p
E ;

whereKp denotes the p-th skeleton of the simplicial complexK . There is a unique
continuous map

!:N(X) �! X
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determined by the condition that if y = fyEg 2 N(X), yE 2 NE , and �y;E =
(E1; : : : ; Ei) is the minimal simplex in NE containing yE , the carrier of yE , then
!(y) 2 E1 \ � � � \ Ei. Indeed,

T
�y;E

E1 \ � � � \ Ei 6= ;, and uniqueness follows
from the Hausdorff property of X .

Axiom C. The natural homomorphism

colim
����!
p>0

h�(Np(X)) �! h�(X)

induced by ! is an isomorphism.
In [36] Inassaridze derives the Vietoris–Begle theorem for such a theory with

coefficients in the category of Abelian groups. His theorem requires point inverses
to be homologically trivial. Applying the theorem to the map f :X ! Y , we get
an isomorphism

H�(f ;A):H�(X;A) �= H�(Y ;A)

of Chogoshvili homology groups for anyA 2 ABGROUPS. SoX itself is Chogoshvili-
acyclic for any Abelian group of coefficients.

Now the main tool of Berikashvili in [5, 6] is the following characterization ([6,
Theorems 3.1, 3.4]).

THEOREM 7.4.2. A generalized homology theory k� on the category of compact
Hausdorff spaces satisfies Axioms A, B, and C, if and only if there exists a functorial
convergent Atiyah–Hirzebruch spectral sequence with

E2
p;q = Hp(X; kq(point)) =) kp+q(X):

WhenX is Chogoshvili-acyclic for all Abelian coefficient groups, this sequence
collapses at the E2-term with just the right entries in the 0-th column to make X
k-acyclic. Axiom A is satisfied by any Steenrod theory. To complete the proof
of Čech-acyclicity of bX , it suffices to verify that Axioms B and C hold for the
modified Čech theory with coefficient spectrum K(R) (cf. [51]).

LEMMA 7.4.3. Let fX�g be an inverse system of compact Hausdorff spaces with
X = lim�X�. Then there is a spectral sequence with

E2
p;q = limp

 ����
�

�hq(X�;KR)

converging to �h�(X;KR).
Proof. This is identical to the proof of Theorem 8.5.1 from [22]. Observe that

N(Covs X) �= fN(Covs X�)g 2 PRO-S-SETS:

The lemma follows from the Bousfield–Kan spectral sequence (Theorem 1.1.5)
applied to fN(Covs X�)g viewed as an object in the category PRO-(PRO-S-SETS).
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Apply the lemma to the system of wedges of spheres and notice that

limp

 ����
�

�hq(S
n
�;KR) = 0 for p > 0

by Corollary 1.2 of [6] or [37]. Since also

limo

 ����
�

�hq(S
n
�;KR) = lim

 ����
�

�hq(S
n
� ;KR);

the isomorphism between the E2- and E1-terms is the one required in Axiom B.

LEMMA 7.4.4. For each integer $ 6 0 there is a spectrum K$(R) with

K$
i (R) =

(
�i(K

$R) = 0 for i < $,

K$
i (R) = Ki(R) for i > $.

Proof. K$R = 
�$Spt(iC�$(R)). See Section 1.2 for notation.

Apply Lemma 7.4.3 to eachNs(X), s > 0, and homology theory �h�( ;K$R),
getting spectral sequences with

E2
p;q = limp

 ����
E2A

�hq(N
s
E ;K$R):

Now, for any finite complex C

�hn(C
p;K$R) = �hn(C;K$R)

for p > n � $. So each entry in the E2-term associated with Ns(X) with q-
coordinate< s+$ coincides with the corresponding entry in the E2-term associ-
ated with N(X). Passing to the limit as s!1 we see that the natural map

t(X): colim
����!
p>0

�h�(Np(X);K
$R) �! �h�(N(X);K

$R)

is an isomorphism.
Notice that the natural homomorphism from Axiom C factors as

colim
����!
p>0

�h�(Np(X);K$R)
t(X)
�! �h�(N(X);K$R)

!��! �h�(X;K$R):

It remains to show that !� is an isomorphism.
Recall a construction due to Eldon Dyer. Let U 2 CovX and set

LU (X) = f(y; x) 2 NU �X : x 2 cl(U1 \ � � � \ Uk)g;

where �y = (U1; : : : ; Uk) is the carrier of y. This is a closed subspace ofNU �X .
The second coordinate projection !E :LU (X) ! X is a homotopy equivalence
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becauseX is normal. The homotopy inverse is  U :X ! LU (X), x 7! (gU (x); x),
where gU :X ! NU is the canonical map associated to a partition of unity. Let
�VU :LV(X) ! LU (X) be the restriction of the map �VU � id:NV(X) � X !
NU (X)�X . Then

N(X) = lim
 ����

U2Covs X

fLU (X); �
V
U g;

!U ��
V
U = !V , and the mapN(X)! X induced by f!Ug coincides with !. Since

each !U is a homotopy equivalence,

!�: �h

0@ lim
 ����

U2Covs X

LU(X);K
$R

1A �! �h(X;K$R)

is an isomorphism (e.g., once again using Lemma 7.4.3). Passing to another (homo-
topy) colimit, one gets the result forK(R) instead of the semi-connectiveK$(R).
This verifies Axiom C.

7.5. REMARKS ABOUT TOPOLOGICAL PROPERTIES

Remark 7.5.1. bX is nonmetrizable for the same reasons as bE � E in Example
6.1.12 with the lexicographic order topology: both are compact but not separable.
Note also that the action of � at infinity is large, and although bX happens to be
Čech-acyclic, it is unlikely to be contractible. These three features of bX make
Theorem 1 inapplicable.

Remark 7.5.2. This is related to the previous remark. Observe that in the case
G = SL2 (discussed in detail in Example 6.1.12) the identification map bX ! �X+

can be factored through another compactification of �X where all irrational strata
are collapsed to points. All of our arguments can be done for that space. The matters
can be simplified even further by noticing that the action of � on the resulting space
is small at infinity, and the space bX itself is metrizable. Note, however, that this
cannot be arranged in our more general situation because the action of �B0 on
�(B0) is already not small.

8. Bounded Saturation in the Boundary

8.1. THE METRIC IN �X

The space bX contains �X as an open dense�-subset, in particular� acts continuously
on �X as before. The metric that we use in �X is a transported �-invariant metric.
It can be obtained by first introducing any bounded metric in the compact �X/�
and then taking the metric in �X to be the induced path metric where the measured
path-lengths are the lengths of the images in �X /� under the covering projection.



NOVIKOV CONJECTURES AND LARGE ACTIONS AT INFINITY 359

In this situation, the diameter of a chosen fundamental domain � is bounded by
some number D as is also the diameter of any �-translate of the domain. Notice
that this metric is very different from the one Borel and Serre used in [8, Sect. 8.3].
The general metrization theorems of Palais they used produce metrics which are
bounded at infinity.

The crucial property of our metric is that by choosing a base point x0 in � and
taking its orbit under the �-action we can embed the group � with the word metric
quasi-isometrically in �X . In this sense, the metric is similar to the left invariant
metric in a nilpotent Lie group used in Section 5.2.

8.2. FUNDAMENTAL DOMAINS AND SETS

If X is the symmetric space G=K for a linear semi-simple Lie group G, �:G !
G=K is the natural projection, and � < G is a discrete subgroup, G and � act
on X from the left. Reembed � in G by conjugating by an element of K so that
�(e) 6= 
 � �(e) for any 
 2 �, 
 6= e. Recall that X has a left G-invariant metric
ds2, and there is the corresponding distance function d:X2 ! R>0 . Define

E = fx 2 X : d(�(e); 
 � x) � d(�(e); x); 
 2 �g:

This set is called the Poincaré fundamental domain.

DEFINITION 8.2.1. Let G be a reductive Q-group, and let � � G(Q) be an
arithmetic subgroup. Then 
 � G(R) is a fundamental set for � if (1) K � 
 = 

for a suitable maximal compact subgroup K � G(R), (2) � � 
 = G(R), (3)

�1
 \ (xG(Z)y) is finite for all x, y in G(Q).

Remark 8.2.2. Property (1) implies that the image of 
 in X = G(R)=K is a
fundamental set for the induced action of � on X . If 
 is a fundamental set for
� = G(Z) then the property (3) allows to construct a fundamental set for any
subgroup �0 commensurable with � by taking
0 =

S
�2� � �
, where� is a set of

representatives of �0=(� \ �0). The classical constructions of Siegel fundamental
sets can be seen in [46, Sects 4.2, 4.3].

LetP0 be the standard minimal parabolicQ-subgroup ofG, letA be the maximal
Q-split torus of G contained in P0, and K be the maximal compact subgroup in
G(R) whose Lie algebra is orthogonal (relative to the Killing form) to the Lie
algebra of A(R). Let

At = fa 2 A(R)
0 : �(a) 6 t;8� 2 �g:

Recall that P0 = ZG(A) � Ru(P0). Furthermore, ZG(A) � A � F where F is
the largest connected Q-anisotropic Q-subgroup of ZG(A). From the Iwasawa
decomposition, G(R) = K � P (R). This yields the following decomposition:
G(R) = K �A(R)0 � F (R) � RuP0(R).
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DEFINITION 8.2.3. A Siegel set in G(R) is a set of the form

�t;�;! = K �At � � � !;

where � and ! are compact subsets of F (R) and RuP0(R) respectively.

THEOREM 8.2.4 (Borel). There are a Siegel set � = �t;�;! and a finite set C �
G(Q) such that 
 = C � � is a fundamental set for �.

The results of Garland and Raghunathan from [30] determine the form of the
Poincaré fundamental domains which look like the sets described in Theorem 8.2.4.
They work with nonuniform lattices � in a rank one linear algebraic semi-simple
Lie group G.

Fix some Iwasawa decompositionG = KA0N0. There is a parabolic subgroup
P0 < G with Langlands decomposition P0 =M0A0N0.

THEOREM 8.2.5 (Selberg, Garland–Raghunathan).

1: The total number of geodesic rays r(t), t 2 R>0 , such that r(0) = �(e),
r(R>0) � E , is finite. Denote the minimal such number by M and choose E
with this number of cusps.

2: If ri = limt!1 ri(t) 2 @X , 1 6 i 6M , let �i = stab(ri). Then E =
SM
i=0 Ei,

where E0 is a compact set, and there is t0 > 0 such that

ri(R>t0 ) � Ei; Ei \ Ej = ; for 0 6= i 6= j 6= 0; Ei = gi�i;

where gi 2 G, gi =2 �ne, and �i = fx 2 X : x = r(R>l) for geodesic rays
r: y !W (P0), y 2 !i, !i � X are compactg.

3: One has gi�ig
�1
i < M0N0, whereN0 is the maximal nilpotent subgroup of the

stabilizer of the standard cusp, and !i is the closure of a fundamental domain
for gi�ig

�1
i in the horocycleN0 � r(l).

When � is an arithmetic subgroup, the cusps ri are rational, i.e., gi 2 G(Q).
If � is torsion-free then gi�ig

�1
i acts freely in N � r(l). Also, there is ! = !i,

1 6 i 6 M . Consider �0 = h�; g1; : : : ; gM i < G(Q), the subgroup generated
by the listed elements. This subgroup has a fundamental domain with unique cusp
which is contained in a Siegel set�t;!,! being the closure of a fundamental domain
of �0\N0 inN0(R) �= e(P0). So� � q�1

P0
(!) and (�0=�0\N0) �cl(�) = q�1

P0
(!).

According to part (3) of Theorem 8.2.5, � can be completed to the fundamental
domain �� of � in �X so that cl �X( ��) = clX(�) [ !.

8.3. QUASI-ISOMETRY INVARIANCE

Every two arithmetic subgroups�1,�2 inG are commensurable, hence their Cayley
graphs are quasi-isometric. This also implies that if di are �i-invariant metrics in
�X transported from �X=�i, i = 1; 2, then ( �X; d1) and ( �X; d2) are quasi-isometric.



NOVIKOV CONJECTURES AND LARGE ACTIONS AT INFINITY 361

PROPOSITION 8.3.1. The system of boundedly saturated sets in bX � �X is a
quasi-isometry invariant of ( �X; d).

Proof. Let ( �X; d1), ( �X; d2) be quasi-isometric structures on �X . It suffices to
show that for a subset 
 � �X and a large D1 � 0, the enlargement 
[D1]1 with
respect to d1 is contained in 
[D2]2 for some D2 > 0. If �, � are the constants
associated to the quasi-isometry id: ( �X; d2) ! ( �X; d1), let D2 = (D1 � �)=�.
Then x 2 
[D2]2) d2(x; o) 6 D2, o 2 
) d1(x; 0) 6 �d2(x; o) + � = D1.

Recall �0 < G(Q) constructed in Section 8.2. Since gi�l;!g
�1
i are precisely

the parabolic vertices of E , the complement En
SM
i=1 gi�g

�1
i is compact, so a �-

domain is contained in ��[D]�0 for some D > 0. This implies even more directly
that the boundedly saturated sets determined by � and �0 coincide. Now we can
study the bounded saturation using the simpler domain ��.

8.4. SATURATION IN RATIONAL STRATA

Fix the coordinate map %
def
= ��1:Rr ! N0

�= e(P0) defined in Section 4.2.
Let O = f(xi) 2 Rr : 0 6 xi 6 1; 81 6 i 6 rg, then %(O) is a domain
for �0 \ N0 in e(P0). The translates form a cellular decomposition of e(P0). The
induced decompositions of e(P ), P = gP0g

�1 2 PQ, are invariant under �0 \N ,
hence are well-defined.

Let Zi
def
= h
ii = Gi \ �

0
P , where �0P = �0 \ P (Q). The computation in

Section 4.2 shows that the union of translates of the fundamental cube g%(O)g�1

in e(P ) by the coset �0P =Zi disconnects e(P ). If �i:Z ! Zi is the obvious
isomorphism then �i(n) � �0P =Zi also disconnect e(P ). We will call these unions
of cells walls in e(P ) and denote them byWi;n.

PROPOSITION 8.4.1. Each cell in the decomposition of �(P ) from Section 4.2
for P 2 PQ is boundedly saturated in Y .

Proof. The closures of walls in e(P ) disconnect �(P ). The complements of
Wi;n are denoted by R�i;n. Note that the cell in �(P ) corresponding to the i-th
coordinate and the positive or negative direction is the inverse limit ofR�i;n, n 2 Z,
ordered by inclusion. Choose a cell � by fixing i and +, loosing no generality.
If y 2 �Xn�(P ), say y 2 �(P 0), then the geodesic asymptotic to both W (P )
and W (P 0) projects to �y 2 e(P ). Then �y 2 Wi;n for some n 2 Z. Denote
C(int (Wi;n+1 [Wi;n+2 [Wi;n+3)) by Bi;n+2. If the subset � � �0 \NP makes
Wi;n+2 = � �! then (�0=�0 \N) � � �� � Bi;n+2, so Bi;n+2 is a barrier separating
y and � into the different connected components of �XnBn;m+2: y 2 H�i;n+2, � �

H+i;n+2. If fysg � H
�
i;n+2 is a sequence converging to y then fysg[1]\H

+
i;n+2 = ;.

Inductively fysg[D]\H
+
i;n+3D = ;, therefore, fysg[D]\� = ;. By Lemma 5.1.2,

� is boundedly saturated.
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8.5. INTERSTRATOUS SATURATION

Two sequences fx1
ig, fx

2
ig in a metric space (X; d) are called fellow travelers if

there is K > 0 such that d(x1
i ; x

2
i ) 6 K for every i 2 N.

LEMMA 8.5.1. Let fyig and fzig be sequences in ( �X; d) converging to y 2
�(Py) \ Y , z 2 �(Pz) \ Y . If Py 6= Pz then the sequences do not fellow-travel.

Proof. Let �yi, �zi be the points in the image of the imbedding �:�0 ,! X ,

 7! 
 �x0, x0 2 � � ��, in the same translate of the domain �� as yi and zi. Since
d(yi; �yi) 6 D, d(zi; �zi) 6 D, it suffices to show that f�yig, f�zig do not fellow-travel.

Suppose that �yi = �(
0i), �zi = �(
0i). Observe that if the sequences f�yig, f�zig
fellow-travel in the �-invariant metric d� then they also fellow-travel in the Rie-
mannian metric dG. Indeed, in the �-invariant metric d(�yi; �zi) = d((
0i)

�1(�yi),
(
0i)

�1(�zi)) = d({(I); (
0i)
�1(�zi)). Since there is a constantM such that d(�yi; �zi) 6

M , all of (
0i)
�1(�zi) are contained in a word-metric ball in {(�) of radius M

centered at {(I). They form a finite set which is, therefore, bounded in the Rie-
mannian metric dG in X which is G-invariant. So there is a constant N such that
dG(�yi; �zi) = dG({(I); (


0
i)
�1(�zi)) 6 N .

Now each translate 
 � �� contains at most a finite number of points fyig for
otherwise y 2 
 �! � 
 � �� � CY . Thus the sequence f�yig takes on infinitely many
values. By inspection of projections into e(Py), limi!1f�yig = W (Py) 2 @X .
Same argument shows that the limit of f�zig in "X is W (Pz). This shows that the
sequences f�yig, f�zig do not fellow-travel in the Riemannian metric; neither do they
in our metric d� by the observation above.

COROLLARY 8.5.2. Each stratum-component &(P ) = �(P ) \ Y , P 2 PR, of Y
is boundedly saturated.

Proof. If &(P ) is not boundedly saturated then there are fellow-traveling sequences
fyig, fzig converging to y 2 &(P ) and z =2 &(P ) (see the proof of Lemma 5.1.2).
This is impossible by Lemma 8.5.1.

That the boundaries of rational strata are boundedly saturated is not new: this
follows from Proposition 8.4.1 and Corollary 5.1.4. But Corollary 8.5.2 also says
that each �(P ), P = PRnPQ, is boundedly saturated.

Remark 8.5.3. It is impossible to use the theorems of Section 5 about right
actions here: the right action of G(R) on X does not extend to �X . For example, in
the SL2-situation, in the upper-half plane model, the image of the y-axis

iy �

�
� �


 �

�
= y

�
�� + �
 + i

�2 + 
2

�
is a straight Euclidean line with slope 1=(��+�
), not a geodesic. It is interesting
to note, however, that there are constructions of Mumford et al. ([3], [39, IV,
Sect. 2]) to which the right action naturally extends. Compare the pictures on page
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179 in [39]. The lines in the second picture, if extended, should converge at the
other endpoint of the horizontal geodesic. They are precisely the images of the
right action computed above.

9. Proof of Theorem 3

9.1. ORDERLY COVERINGS

Given a coveringU 2 Covs bX , the proof of compactness of bX (Section 7.3) required
a construction of a finite covering fV (Pi)g of @X associated to some regular
neighborhoods Regni(Pi) of �(Pi). We want a variation on that constuction which,
given a covering U 2 Covs Y , refines U . Recall from Section 5.5 that Staro

n(v)
is the open star of v 2 ��(V(n)) � �(P ), P 2 PR, in the projection of the nth
derived cubical decomposition of Ir.

DEFINITION 9.1.1. Let us alter the notation C(Staro
n(v)) in this definition to mean

Staro
n(v) when v 2 e(P ). Define

Ordn(v) = Y \ C(Staro
n(v)) n

[
P 02F

�(P 0);

where F is the set of all P 0 with qP (W (P 0)) 2 @ Staro
n(v).

It is clear that Ordn(v) is an open neighborhood of v in Y . For any covering
U 2 Covs Y there is an order n such that fOrdn(v) : v 2 ��(V(n)) \ Y g refines
fU 2 U : U \ �(P ) 6= ;g. Now it is clear from compactness of Y that there
is a finite set fPk : k 2 �g � PR and integers nk so that

S
kfOrdnk(v) : v 2

��(V(nk)) � �(Pk)g refines the given U 2 Covs Y . The full cofinal subcategory
of Covs Y consisting of such orderly refinements will be denoted by Ord

sY .
In order to create manageable rigid coverings, we consider the excised versions

of the sets Ordn(v):

ExcOrdn(v) = Ordn(v)nStaro
n(v):

Now ExcOrd
sY is the category of open coverings V which contain some U 2

Ord
sY as a subset and may contain ExcOrdn(v) if Ordn(v) 2 U . The cofinality

property mentioned above is certainly not affected.

DEFINITION 9.1.2. Let PREORDY be the full subcategory of Cov Y with objects
� 2 PREORDY satisfying

– im � 2 ExcOrd
s Y ,

– y 2 �(Pk) for some k () �(y) = Ordnk(v) for some v 2 �(Pk).

It is implicit in the second condition that for y =2 �(Pk) for all k, there exists ` 2 �
and n` with �(y) = ExcOrdn`(v) for some v 2 �(P`). Define Ord Y to be the full
subcategory of Cov Y closed under�-operation generated by PREORDY .
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It is easy to see that Ord Y is not cofinal in Cov Y but satisfies the hypotheses
on the category C in Section 2.3. Recall that the conclusion of that section was that
the map

|�: �h(Y ;KR) �! holim
 ����
Ord Y

(N ^KR)

induced by the inclusion |:Ord Y ,! Cov Y is a weak homotopy equivalence.

9.2. DEFINITION OF f�g

The idea is to define finite rigid coverings of Y by boundedly saturated sets which
can be naturally ‘piecewise’ approximated by coverings from Ord Y . Let N0 =
NP0 for the standard P0 2 PQ. Consider the covering of @Ir by the 2r open stars of
V(�1) in the (�1)-st derived decomposition. The images�0�(Staro(v�1(s1; : : : ; sr)))
cover the boundary �N0. The sets are no longer open but they are boundedly satu-
rated with respect to the �-invariant metric as a consequence of Proposition 8.4.1
and Corollary 5.1.4.

DEFINITION 9.2.1. The coveringA0 of �N0 by the sets

�0�(Staro(v�1(s1; : : : ; sr)))

is finite but not open. This choice generates the category f�0g of finite rigid
coverings�0 of �N0. Notice that it follows from property (2) of finite rigid coverings
that im�0 = A0.

Notice that the homotopy type ofNA0 is, in fact, that of the (r�1)-dimensional
sphere: the nerve of A0 is the same as the nerve of the open star covering of @Ir

with respect to the (�1)-st derived decomposition, and that can be easily seen to
be homotopy equivalent to Sr�1.

The choice of A0 provides well-defined coverings AP of �(P ), P 2 PQ,
by G(Z)-translates of A0. There are also associated rigid coverings f�P g with
im�P = AP .

DEFINITION 9.2.2. Given a covering! 2 Ord Y , ! = �1� : : :��m, where each
�i 2 PREORDY . Let fPk : k 2 �g be the finite collection of parabolicR-subgroups
associated to �1; : : : ; �m. Collect the following data:

1. for each P 2 PQ pick an arbitrary �P 2 f�P g – in particular, for each
Pk 2 PQ there is �k 2 f�Pkg,

2. for each P =2 PQ take �P to be the constant rigid covering with im�P =
�(P ).

Define the following finite rigid covering �(!; �P ):

�(y) =

(
�k(y) [ (!(y)n�(Pk)) if y 2 "(Pk) for some k 2 �,

!(y) otherwise.
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Since each !(y), y =2 �(Pk) for k 2 �, is a union of closed strata �(P ) \ Y ,
it is boundedly saturated by Corollary 8.5.2. Same is true about !(y)n�(Pk),
y 2 �(Pk). Also, all im�k, k 2 �, are boundedly saturated by Proposition 8.4.1
and Corollary 5.1.4. Thus all �(y), y 2 Y , are boundedly saturated subsets of Y .

9.3. PROOF OF THEOREM 3

Now we can return to the argument started in Section 3.4 and use C = Ord Y and
�0 = �(!; �P ) for ! 2 Ord Y . We have seen that |� is a weak equivalence. It
remains to see that the orderly sets are nice enough for all inclusions sat�:N� ,!
N�(�) to be homotopy equivalences.

This is the way one would proceed if there were no need to make the con-
struction of bX equivariant. Instead of �(B0) we would use nonequivariant but
simpler compactifications by cubes of appropriate dimensions. With the obvious
choices of cubical derived decompositions (induced by � which is now a cellu-
lar homeomorphism) and the other constructions repeated literally, the saturation
process in the boundaries of rational strata would produce sets which are stars of
lower-dimensional sides. It would be enough to consider the stars of the vertices.

Now notice that there is a projection of this hypothetical situation to the real
equivariant Y . This projection induces an equivalence on the Čech homology level
by our weak Vietoris–Begle theorem 7.4.1. Also, the images of the saturations
in the hypothetical boundary Y hyp project to precisely the boundedly saturated
sets we construct in Y . There is a well-defined functorial ‘lift’ from our �’s to
the saturations in Y hyp with the same combinatorics. The induced maps form a
commutative diagram:

holim
 ����

Ord Y hyp

(N ^KR)
sat�

����! holim
 ����

Ord Y hyp

N�( ) ^KR??y' ??y'
holim
 ����
Ord Y

(N ^KR)
��

����! holim
 ����
Ord Y

N�( ) ^KR

So our constructions induce precisely the needed map. Now inclusions of nerves
N� ,! N�(�) induce natural weak equivalences N� ^ KR ' N�(�) ^ KR.
This follows from the fact that factoring out a contractible subcomplex generated
by a subset of vertices factors through the inclusion into the complex where the
same subset generates a simplex. This is precisely what happens with finitely
many disjoint subcomplexes associated to sets covering the special strata. We can
conclude that �� is a weak homotopy equivalence by Theorem 1.1.2.
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Remark. It is easy to see that the obvious reconstruction of ! from �(!; �P )
which ‘forgets’ about the choices of �k in f�Pkg defines a functor R: f�g !
Ord Y . This is the exact inverse to �. The natural induced map

R�: holim
 ����
Ord Y

(N� ^KR) �! holim
 ����
f�g

(N�R ^KR) = holim
 ����
f�g

(N ^KR)

is a weak equivalence of spectra by Theorem 1.1.3. Now the composition

R���|
�: �h(Y ;KR) '

�! holim
 ����
�2f�g

(N� ^KR)

is a weak homotopy equivalence with the required target.

Appendix A. Other Theories. Other Groups. Other Methods

A.1. EXTENSIONS TO OTHER THEORIES

The extension of theK-theoretic results toL-theory is formal using the basic results
of [16, Sects 4, 5]. The statements about theL-theoretic assembly maps are the same
as before when the coefficient spectrum is replaced by the nonconnective spectrum
L�1(R) for a ring with involution R satisfying K�i(R) = 0 for sufficiently large
i. The homotopy groups �i(L�1(R)) are the surgery obstruction groups Li(R).

The extension toA-theory is trickier. The necessary details are provided by [19]
and earlier papers of W. Vogell.

If C�(�) denotes the group C�-algebra of � (the completion of L1(�) in the
greatest C�-norm), Kasparov defines �:RK�(B�) �! K�(C

�(�)). The splitting
of this map implies the Novikov conjecture for �—see the explanation on page
414 of [49] or Corollary 2.10 in [50]. The recent work of Carlsson–Pedersen–Roe
[18] extends the methods used here to work for this C�-algebraic version of �.

A.2 HILBERT MODULAR GROUPS

Let F be a totally real algebraic number field of degree n over Q, letOF be the ring
of integers of F . Consider G = RF=QSL2, the Q-group obtained from SL2=F by
restriction of scalars according to Weil ([56, Section 1.3]). ThenG(Q) = SL2(F ),
G(R) = SL2(R)

n is a connected semi-simple Lie group,K = SO(2)n is a maximal
compact subgroup, and the associated symmetric space X(G) = H n has rank n.
Any subgroup of finite index in G(Z) = SL2(OF ) is an irreducible lattice in
G(R) embedded via the inclusion SL2(OF ) ,! SL2(R)

n by using the n distinct
Q-homomorphisms F ! R as coordinate functions.

The Hilbert modular groups are SL2(Od), where Od is the ring of integers in
the real quadratic field Q(

p
d). Here the two homomorphisms Od ! R are the

inclusion and the Galois conjugation. We will assume that � is a neat arithmetic
subgroup of SL2(Od). (A subgroup � is neat when the subgroup of C � generated
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by the eigenvalue of any element of � is torsion-free. In particular, � itself is
torsion-free.) The quotients �nX are called the Hilbert(–Blumenthal) modular
surfaces.

Examples of such arithmetic subgroups of G are the principal congruence
subgroups

�[`] = ker
�

SL2(Od)
mod
�! SL2

�
Od=(`)

��
for ` > 3.

THEOREM A.2.1. If � is a neat arithmetic subgroup of ROd=QSL2 then the
assembly map � is a split injection.

If P0 is the standard parabolic Q-subgroup of SL2 then B0 = P0 � P0 is the
standard parabolic Q-subgroup of G = ROd=QSL2. The Q-rank of G is one. The
stabilizer of the standard cusp in � is a uniform lattice in the solvable Lie group
Sol, and the associated stratum in the Borel–Serre enlargement can be identified
with the underlying space of Sol ([26], [34, Sect. 3.H]) where the stabilizer acts by
left multiplication.

The group Sol can be expressed as a semi-direct product of R2 and R: if the
elements of the set Sol = R2 � R are (x; y; z), the action of z is the linear
transformation given by (x; y) 7! (ez � x; e�z � y). We can transport the flat metric
from R3 into Sol using this identification. The straight lines through the origin in
Sol are then given as

L = f(xb1 + txd1; x
b
2 + txd2 ; x

b
3 + txd3) : t 2 Rg:

Here is the formula for the left action of (y1; y2; y3) 2 Sol on this line:

(y1; y2; y3) � L = (y1 + ey3(xb1 + txd1); y2 + e�y3(xb2 + txd2); y3 + xb3 + txd3):

It shows that Sol acts on the parallelism classes of rays in the stratum. The right
multiplication action of Sol on itself does not extend to the parallelism classes of
rays. There is one set of lines, however, invariant under the right action: if xd3 = 0
then

L � (y1; y2; y3) = (xb1 + txd1 + ex
b
3y1; x

b
2 + txd2 + e�x

b
3y2; x

b
3 + y3):

The formula also shows that each class of lines in this set is actually fixed by the
right action.

Now consider the ideal compactification of Sol with the flat metric. Each point
in @(Sol) with xd3 = 0 can be blown up to a closed segment, the interior points
corresponding to subclasses of lines with the common coordinate �1 < xb3 <

+1. The result will be called �(Sol).
The same methods as in Section 5 apply and show that each open segment

is boundedly saturated as well as each of the endpoints and each of the comple-
mentary hemispheres. The closed segments above are the elements of a cylinder
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Sol[ [�1;+1]� @D2 � �(Sol). Let us identify �(Sol) with the closed cylinder
[�1;+1] � D2 and embed �(Sol) in R3 with cylindrical coordinates (r; �; z)
as the set defined by 0 6 r 6 1, 0 6 � 6 2�, and 0 6 z 6 1. Given a nat-
ural number n, define the n-th standard sectoral decomposition of �(Sol) to be
the representation of �(Sol) as the union of sectors Sn(i; j; k) = f(r; �; z) 2
R3 : i=2n 6 r 6 (i+ 1)=2n; j�=2n�1 6 � � (j + 1)�=2n�1; k=2n 6 z 6

(k + 1)=2ng for every choice of the integral triple 0 6 i; j; k 6 2n � 1. The points
vn(i; j; k) = (i=2n; j�=2n�1; k=2n) for 0 6 i; j; k 6 2n will be called vertices.
A vertex in the N -th subdivision determines star Star(vn(i; j; k)) = f(r; �; z) 2
R3 : (i� 1)=2n6 r6 (i+1)=2n; (j�1)�=2n�16 �� (j+1)�=2n�1; (k�1)=2n6
z 6 (k + 1)=2ng with the obvious modifications when i or k equals 0 or 1. Also
links and open stars are defined by direct analogy with their simplicial analogues.

The boundary set �X is the union of the rational strata

�QX
def
= �(Sol)�B0(Q)G(Q)

and the irrational points at infinity with the auxiliary topology defined by the
obvious analogy with Section ??. Now bXb is the analogue of bX or, more precisely,bXb from Remark 7.2.1. The basic neighborhoods of irrational points at infinity are
completions of their neighborhoods in the spherical topology.

Using the argument from Remark 7.2.1, it is easy to see that bXb is compact but
not Hausdorff due to the arrangement of higher dimensional maximal flats in X
(see Remark 7.2.1). In order to induce the Hausdorff property, consider the set map
f : bXb ! "X . The idea is to make this map continuous. Introduce a new topology
in bXb generated by the intersections of basic neighborhoods N (x), x 2 bXb, and
the preimages of neighborhoods of f(x) 2 "X . Since each fiber of f is Hausdorff,
and the analogue of Lemma 7.1.3 holds, the new topology on bXb is Hausdorff and
makes f a quotient map. Denote the new space by bX . The map f : bX ! "X can
be used as in Section 7.4 to show that bX is Čech-acyclic.

The rest of the argument for the R-rank one case generalizes easily, we only
need to indicate the boundedly saturated sets we choose inside the rational bound-
ary strata. It suffices to show the subsets of be(B0) �= �(Sol). For the chosen
n 2 2N and � 2 f0; 1g, they are A(n; j; �) = f(r; �; �)g [ f(r; �; z) : r =
1; (2j + � � 1)�=2n�1 6 � � (2j + � + 1)�=2n�1; z 2 (1 � �; �]g, where
0 6 j 6 (

p
2)n � 1 is an integer. These are open stars of certain collections of

vertices in the 2n-th standard sectoral decomposition.

Remark A.2.2.

1. The construction of the map f is apparently the correct way to deal with the
general case of a lattice in a Hermitian symmetric domain. The target must
be the maximal Satake compactification which coincides with "X in the rank
one situation (cf. [32, Sect. 10.3, Sect. 12.5, Appendix D]).
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2. The ad hoc construction of �(Sol) is designed to be analogous to the NIL case.
The correct way to deal with Sol �= e(B0) is, of course, using [33, Lemma
(7.8)] mentioned before.

A.3 OTHER APPROACHES TO NOVIKOV CONJECTURES

FerWei There has been a lot of research done on Novikov and related conjectures.
The most recent progress known to us is connected with the work of Bökstedt–
Hsiang–Madsen, Carlsson–Pedersen, Connes–Gromov–Moscovici, Farrell–Jones,
Ferry–Weinberger, Higson–Roe, Julg–Kasparov, Ogle, and others.

The method of S. Ferry and S. Weinberger ([27, 28, 29]) uses a similar ‘bounded
control philosophy’. They call an endomorphism of a metric space f :X ! X

bounded if there is k > 0 such that d(f(x); x) < k for all x 2 X .

THEOREM A.3.1 (Ferry–Weinberger). If � is a discrete group such that K =
K(�; 1) is a finite complex and the universal coverX = ~K has a compactificationbX with the properties that

1: the boundary bX � X � bX is a Z-set, i.e., admits a homotopy Ft: bX ! bX
with F0 = id, Ft( bX) � X for all t > 0, and

2: every continuous bounded function f :X ! X extends by identity to a contin-
uous function bf : bX ! bX ,

then the L- and A-theoretic Novikov conjectures for � hold.

We wish to describe one difficulty in using our compactification in this approach.
The Lie algebra n of the nilpotent radical of P 2 PQ decomposes into a direct sum
n = n� � n2�, where � is the unique simple root of (P;A) – a consequence of the
R-rank one assumption. The dimensions dim(n�), dim(n2�) equal the multiplicities
of �, 2�. After exponentiating we get N = N�N2� with N� \ N2� = fIg and
N2� = [N;N ]. If N2� 6= fIg then N is a non-Abelian two-step nilpotent group
with center N2�.

In the situation whenN is non-Abelian, there exists an element g 2 N such that g
acts nontrivially from the right on �N . This action � g: �N ! �N is the extension
from the action  g on N which in its turn extends to a bounded endomorphism
	 of �X . The point is that 	 cannot be extended to an endomorphism of bX by
identity on Y , so even our compactification of e(P ) cannot be used here. However,
this obstacle disappears in the case when N is Abelian, for instance, in the case of
G = SO0(n; 1).
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