THE INTEGRAL K-THEORETIC NOVIKOV CONJECTURE FOR GROUPS
WITH FINITE ASYMPTOTIC DIMENSION

GUNNAR CARLSSON AND BORIS GOLDFARB

ABSTRACT. The integral assembly map in algebraic K-theory is split injective
for any geometrically finite discrete group with finite asymptotic dimension.

The goal of this paper is to apply the techniques developed by the first author
in [3] to verify the integral Novikov conjecture for groups with finite asymptotic
dimension as defined by M. Gromov [9].

Recall that a finitely generated group I' can be viewed as a metric space with
the word metric associated to a given presentation.

Definition (Gromov). A family of subsets in a general metric space X is called
d-disjoint if dist(V,V’) = inf{dist(x,x")|x € V, x’ € V'} > d for all distinct
subsets V, V'. The asymptotic dimension of X is defined as the smallest number
n such that for any d > 0 there is a uniformly bounded cover ‘U of X by n + 1
d-disjoint families of subsets U = U° U ... U U™.

It is known that asymptotic dimension is a quasi-isometry invariant and so
is an invariant of the finitely generated group, independent of the presentation.
One says I has finite asymptotic dimension if it does as the metric space with
a word metric.

Examples from this apparently very large class are the Gromov hyperbolic
groups [9], Coxeter groups [8], various generalized products of these, including
the groups acting on trees with vertex stabilizers of finite asymptotic dimension
[2], and, more generally, fundamental groups of developable complexes of finite
dimensional groups [1]. We proved in [5] that cocompact lattices in connected
Lie groups also have finite asymptotic dimension.

Let K(A) be the nonconnective K-theory spectrum of the ring A. A discrete
group is called geometrically finite if its classifying space has the homotopy
type of a finite complex. Our main result is the following theorem.

Main Theorem. Let T be a geometrically finite group with finite asymptotic di-
mension and let R be an arbitrary rving. Then the assembly map «: h(I', K(R)) —
K (R[I']) from the homology of the group T with coefficients in the K -theory spec-
trum K(R) to the K-theory of the group ring R[T'] is a split injection.

We should mention that the original Novikov conjecture on homotopy invari-
ance of higher signatures has been verified for fundamental groups with finite
asymptotic dimension by G. Yu [10]. Also, Gromov has constructed examples of
geometrically finite groups with infinite asymptotic dimension, cf. [7], footnote
to Problem 8 in section 9.

The authors gratefully acknowledge support from the National Science Foundation.
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First, we summarize in section 2 the conversion of the Novikov conjecture
for assembly maps in algebraic K-theory to the statement that certain con-
trolled assembly maps are weak homotopy equivalences and list the properties
of groups and metric spaces required to prove the latter. In section 3 we verify
that groups with finite asymptotic dimension satisfy those properties.

1. COARSE LOCALLY FINITE HOMOLOGY

In this section, we will modify the definition of PRl trom [3] to produce
a coarse version of it. This theory will have the property that it captures the
homology of a locally compact space “at infinity”, as does bh!f but does not see
any of the ordinary homology of the space. Locally finite homology as defined
in [3] is equivalent to ordinary homology for compact spaces, while our coarse
version will be identical to its value on a point for all compact spaces. This is
an advantage, since the comparison with bounded K-theory of metric spaces
will be more direct.

In this section metric spaces will be understood in the following generalized
sense.

Definition 1.1. A generalized metric spaceis a set X and a functiond: X x X —
[0, ) U {co} which is reflexive, symmetric, and satisfies the triangle inequality
in the obvious way. The generalized metric space is proper if it is a countable
disjoint union of metric spaces X; where im(d|X; x X;) C [0, o), and all closed
metric balls in X are compact. The metric topology on a generalized metric
space is defined as usual. Usual metric spaces are the generalized metric spaces
with distance function d assuming only finite values.

We recall from [3] that h' is defined as follows, for any topological space.
S.X is defined to be the usual singular complex simplicial set attached to X,
whose k-simplices are the continuous maps from the standard k-simplex to X.
We say that a subset A < Sy X is locally finite if for every point x € X, there is
a neighborhood U of x so that U nim(o) is non-empty for only finitely many
o € A. Itis clear that if A is locally finite, then so are d; A = {d;o | 0 €
A} and s;A = {s;0 | o0 € A}, and that d;| A and s;| A are proper maps of
sets. Recall that a map of sets is proper if the inverse images of finite sets of
points are finite. We let £ X denote the partially ordered set of locally finite
subsets of Sy X, where the partial ordering is via inclusions of sets. The face
and degeneracy maps d; and s; induce maps of partially ordered sets £d; and
Ls;. For a spectrum S, we define 7, (X, S) to be the colimit

colim hlf(ﬂl;S)
AL X

The locally finite homology h' is defined on the category of sets and proper
maps as in [3], section II. Now hlf(X,S) is defined to be the total spectrum
|7.(X,S)|. When X is a proper generalized metric space, we restrict ourselves
to sets A of singular simplices of uniformly bounded diameter (i.e. the sets
im(o) as o varies over A have diameter bounded by some fixed number N),
and obtain the related theory bpif(x ,S). This is the theory which was used to
prove the results in [3] where it was possible to define an assembly map from
buif(x,K(R)) to K(X,R).
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The observation we now make that once one has made the restriction to
families of singular simplices of uniformly bounded diameter, one can con-
struct a locally finite homology and corresponding assembly map which does
not require that the singular simplices be continuous maps. So, we will let A€
denote a collection of (possibly non-continuous) maps from A* to X of uni-
formly bounded diameter. The local finiteness criterion still makes sense as
stated, and we may construct a spectrum Cplf (X,S) as in [3]. Moreover, when
one examines the construction of the assembly mabp, it is easily observed that
continuity of o is never used, only the uniform boundedness of the diameters
of the sets im(o ). Thus, we obtain an assembly map

A: Cn(X,K(R)) — K(X,R).
It is now easy to check the following two properties of the theory Cnlf(x ,S).

Proposition 1.2. Suppose that a generalized metric space X is a disjoint union
of subsets X, and that for any xx € Xy and xg € Xg, with « # B, we have
d(x«,xg) = +o. Suppose further that each of the subsets X has diameter
uniformly bounded by a fixed number N = 0. Then Whx,s) = [1«S, and the
assembly map is an equivalence for X.

We recall that the theory 'l is excisive for locally finite coverings of locally
compact spaces. This means that for any locally finite covering {Uy}xeca of X,
we construct the simplicial spectrum which in level k is the space

h’f( [ UaomUalm...mUak>
{oxo,01

..... ok EAL

and that the evident map from this simplicial spectrum to the constant simpli-
cial spectrum with value n(x ,§) is an equivalence of spectra. The analogous
result for “h' is as follows.

For a subset S C X, let S[d] stand for the metric d-neighborhood {x € X |
dist(x,S) <d} Cc X.

Proposition 1.3. Given a locally finite covering of a generalized metric space X
as above, and a parameter d, we construct the simplicial metric space which in
level k is given by

Ch’f( I Uso[d] N Uy [d]N...0 Uuk[d]) .
{00, 01,0, 0k FEAR

Note that the coproduct means that distances between points in different co-
product factors are always infinite. There is an evident map from this simplicial
spectrum to the constant simplicial spectrum with value Chlf(x ,S), and this map
becomes a weak equivalence of spectra after passage to colimits over d.

This proof is similar to the corresponding result in [3], Proposition II.20.

Whenever X is a proper metric space with a group action by isometries,
the spectrum “W(x,s) is equivariant. Recall that the fixed point spectrum
of a T-spectrum R can be defined as R' = Map(S°, R, ). The homotopy fixed
point spectrum can be defined similarly as R"' = Mapy (X, R, ). The collapse
p: X, — SY induces the canonical maps p*: Rl — R,
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Proposition 1.4. Let X be a locally finite simplicial complex with a free action
by a torsion-free group I'. We assume that there is a contractible finite dimen-
sional complex with a free action of T. Then the canonical map p* : h’f(X, S -
h”C(X,S)hr is an equivalence. If X is equipped with a metric so that all sim-
plices of X have uniformly bounded diameter, then the map p*: nlf(x, )T —
Chlf(x, )M is an equivalence.

The first statement is proved in [3]. The second follows similarly by observ-
ing that comparison with the auxiliary simplicial theory “hWix,s) again does
not require continuity of singular simplices.

2. CONTROLLED ASSEMBLY MAPS AND THE NOVIKOV CONJECTURE

Given a discrete group I' and a ring R, one may view an element y € I' as an
isomorphism of the trivial R[I']-module with the inverse y~!. Following Loday,
to each isomorphism f of finitely generated R-modules there corresponds an
isomorphism y ® f of finitely generated R[I']-modules. This functor induces
the assembly map «: BI'. A K(R) — K(R[T']) from the Main Theorem. Here BT
is the compact universal space of I and BI'; A K(R) is the homology spectrum
of the group I' with coefficients in the nonconnective K-theory spectrum of R.
The target is the nonconnective K-theory spectrum of the group ring R[I']. The
integral Novikov conjecture predicts that this map is a split injection for any
ring R and any group I' with BT a finite CW-complex.

The method here is to interpret « as the fixed point map A" of an equivariant
assembly map of spectra

A: “H'(X,K(R)) — K(X,R)

where X is the universal cover of BT, Ch'l is the coarse locally finite homology
theory from section 1, and K (X, R) is the nonconnective bounded K-theory of
geometric R-modules on X. The latter construction requires a proper metric on
X which can be chosen to be the lifting of any bounded metric on the compact
classifying space BI.

Given a proper metric space X and a ring R, recall that the category of geo-
metric modules B(X, R) associated to X has objects triples (F, B, ¢) where F is
a free R-module on the basis B, and ¢»>: B — X is the labelling function such that
¢~1(S) is finite for a bounded S ¢ X. A morphism f: (F,B,¢) — (F',B’,¢’) in
‘B(X,R) is an R-linear homomorphism f: F — F’ with associated number D > 0
such that for any b € B, its image f(b) is generated by those elements b’ in
B’ with the property d(¢(b), ¢p(b’)) < D. The category B(X, R) is clearly addi-
tive. Its nonconnective algebraic K-theory spectrum K (X, R) is usually called
the bounded K -theory of geometric R-modules over X.

Definition 2.1. A map between metric spaces ¢: (My,d1) — (Mo, d>) is even-
tually continuous if there is a real function g such that

d2(Pp(x),P(y)) = gldi(x,y))

for all pairs of points x, ¥ in M;. The map ¢ is proper if for any bounded
subset S C M», the preimage ¢! (S) is bounded in M;.

It is easy to see that proper eventually continuous maps induce maps of
K-theory spectra ¢« : K(M1,R) — K(M»,R).
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If X is a proper metric space with a free action of I by isometries so that the
quotient X /T is compact, then K(X,R) is a I'-equivariant spectrum. A differ-
ent weakly equivalent spectrum Kr (X, R) defined in [3] has good equivariant
properties but we will suppress the distinction in this paper always assuming
the latter construction.

The following is a sketch of the approach to the integral Novikov conjecture.
The assembly map « is related to the map induced by A on the I'-fixed point
spectra via the commutative diagram

[0

BI, AK(R) —%— K(RIT])
CRfX, K(R)T —2 K(X,R)T

where the vertical arrows are both weak equivalences. Further, there is a com-
mutative square

Al

Chlf(x,K(R))T K(X,R)T

| |
Rl(x, KR —2 K (X, RN
By Proposition 1.4, the left-hand vertical map p* is an equivalence whenever
the group T is torsion-free. As soon as the lower fixed-point map A"l is an
equivalence, the two combined commutative squares show that « induces a
split injection. The second equivalence would follow from the observation that

A: “n'(X,K(R)) — K(X,R)

is a nonequivariant equivalence and the general fact that in this case
ART - Chlf(X,K(R))hr . K(X,R)hr

is always a weak equivalence. For example, this was verified in [3] for torsion-
free discrete cocompact subgroups of a connected Lie group. In this paper, we
show that A is a weak equivalence for groups of finite asymptotic dimension.

One of the basic results in bounded K-theory is the controlled excision theo-
rem for finite coverings of a proper metric space X. Now suppose X is a union
of subspaces Y and Z and let B(Y, Z; R) stand for the full additive subcategory
of B(X,R) on objects (F, B, ¢) such that there are numbers Dy, D; > 0 with
im(¢) C Y[Dy]n Z[Dz].

Theorem 2.2 (IV.1 [3]). The commutative diagram
K(Y,Z;R) K(Y,R)

l l

K(Z,R) —— K(X,R)

is a homotopy pushout.

We also need a controlled excision result for certain infinite one-dimensional
coverings of X. Instead of proving an excision theorem for a single covering of
X, one is forced to look at a directed system of coverings.
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Definition 2.3. Let ‘U = {Uy}, @ € A, be a covering of a generalized metric
space X. It is locally finite if it has the following two properties:

(1) forany & € A, the set {&’ € A | Uy N Uy # @} is finite,

(2) for any bounded subset U C X, the set {x € A | U n Uy # @} is finite.
Associated to a locally finite covering, one has a simplicial metric space N.U
where

k
Ny'U = [ () Usi,
(XQyerny X ) EAKFL i=0

the face maps d;|Uq,N...NUy, are the inclusions onto the disjoint union factors
corresponding to (o, ..., &, ..., ®k), and the degeneracy maps s;|Ux,N...NUg,
are the identity maps onto the factors corresponding to (g, ..., X, Xi, ..., Xk).
It is easy to see that the face and degeneracy maps are proper and eventually
continuous with respect to the induced generalized proper metrics in the sense
of Definition 1.1.

A map of coverings ©: ‘U — ‘U’ is a function of the indexing sets 6: A — B
such that Uy C Ug(y). Such maps induce maps of simplicial spectra

K(N.®,R): K(N.U,R) — K(N.U',R).

The inclusions of the multiple intersections Uy, N ... N Uy, in X induce the
assembly map
A(U): |[K(N.U,R)| — K(X,R)
associated to the covering ‘U. If V is a covering, then the covering by the
d-enlargements of the elements of V is denoted by V[d]. For a family of
coverings ‘U (¥) parametrized by integers £ with maps U () — U{') for £ < ¥,
the associated family U (£)[d] determines the canonical assembly

hocolim A(U(#)[d]): hocolim [K(N.U(£)[d],R)| — K(X,R).
0,d 0,d

Our goal is to find conditions on the coverings U(¥) so that on one hand this
assembly map may be identified with the controlled assembly A and on the
other is a weak equivalence. This was done for coverings parametrized by the
integers Z in [3]. In order for the result to apply to metric spaces of finite
asymptotic dimension, we need to generalize to parametrizations by vertices
in a locally finite tree T.

Suppose we are given a locally finite covering where the parameter set is
viewed as vertices of a locally finite tree T with the property Uy N Uy # @ if
and only if {«, &'} is an edge in T, which makes the nerve N.U a subcomplex
of a simplicial tree. References to the natural order on Z must be replaced with
the references to the partial order on vertices in a tree induced by choosing
and fixing a vertex oxg € T.

Definition 2.4. If [t,t’] stands for the unique geodesic segment connecting t
to t’ in T then the relation « < &’ on vertices corresponds to « € [xg, &']. An
adjacent pair of vertices consists of two vertices « and «’ in T connected by
an edge. When the adjacent vertices are related as in @ < &', we denote this
relationship by the ordered pair («, «’).

A simplicial complex is called C-1 if it is a subcomplex of a locally finite
simplicial tree.



NOVIKOV CONJECTURE FOR GROUPS WITH FINITE ASYMPTOTIC DIMENSION 7

Theorem 2.5. If U({¥) is a sequence of locally finite coverings of X indexed by
£ > 0 together with maps of coverings U(L) — U + 1) and the properties:

(1) for any index ¥ the nerve N.U({) is C-1,
(2) for any number d = 0 there is an index € so that N.U(¥)[d] is C-1,

then the assembly map hocolim A(U(£)[d]) is a weak equivalence.

Proof. The proof of Theorem IV.19 that occupies most of section IV in [3] can
be repeated with necessary modifications in terminology and notations. Recall
that there is a partial order on vertices in the tree determined by the fixed vertex
vo. The pairs of adjacent vertices replace the sets of adjacent integers in the
proof. Thus in the definition of disjoint unions on page 82 of [3], one defines
the union Y, = [[, Ux N Uy where the sets Uy are members of U) and y
ranges over the set of all adjacent pairs of vertices (x, &’). The terminology
‘even’ and ‘odd’ is adapted to mean vertices whose distance to vg is even or
odd respectively. V

3. PROOF OF THE MAIN THEOREM

We will apply Theorem 2.5 to spaces that asymptotically embed in products
of trees. The trees we consider are the contractible one-dimensional simplicial
complexes which are locally finite in the sense that the star of any vertexis finite.
Our interest in locally finite trees is justified by the following characterization
of asymptotic dimension.

Definition 3.1. A map between metric spaces ¢: (M1,d;) — (M2,d?) is a uni-
form embedding if there are two real functions f and g with limy_ f(x) = o
and limy . g(x) = o such that

fldi(x,y)) <da(Pp(x), () < g(di(x,y))
for all pairs of points x, y in M;.

Theorem 3.2 (Dranishnikov [6, 7]). The asymptotic dimension of a geodesic
metric space M of bounded geometry is finite if and only if there is a uniform
embedding of M in a finite product of locally finite simplicial trees. In fact, if
asdim(M) = n then M can be uniformly embedded in a product of n + 1 locally
finite trees.

First recall thatI" with the word metric is geodesic and of bounded geometry.
Then we observe we may assume that I' or the space X is a metric subspace of
a product of trees II.

Proposition 3.3. A surjective map ¢: M; — My is a uniform embedding if and
only if it is eventually continuous and there is an eventually continuous map
Y : M> — My which is an asymptotic inverse, in the sense that the compositions
WY and y are bounded. In other words, there are real functions g and g such
that d> (p(x), P(¥)) < g(di(x,y)) and d1(@(t),P(s)) < g(da(t,s)) for all
pairs of points x, y in My and t, s in M>.

Proof. If ¢ is a uniform embedding, we may choose g for g and define

g(z) =sup{z' | f(Z') < z}.
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If ¢: M, — M; is any function such that ¢y (x) = ¢p(x) for all x € M, then
since f(di(y(t),y(s))) < dz(t,s),
d1(p(t),(s)) <supiz’ | f(z") <da(t,s)} = g(da(t,s)).

Notice that ¢y = id. Let D > sup{r | f(r) = 0}, then for any pair of points
x, y € M; with ¢(x) = ¢p(y) we have d,(x,y) < D. This shows that @¢ is
bounded by D.

To see that ¢ with an asymptotic inverse is a uniform embedding, we may
again choose g for one of the bounding functions and define

f(z) =inf{z' | z < g(2') + 2D},
where D is a bound for ¢¢. Then

fldi(x,y)) =inf{z’" | di(x,y) < g(z') + 2D} < da(Pp(x), d(¥))
since
di(x,y)) < g(d2(p(x),$(¥))) +2D.
We have lim,_ f(z) = c because X is not compact. V

Corollary 3.4. If ¢: M1 — M> is a surjective uniform embedding then the in-
duced map of spectra K(M;,R) — K(M>, R) is an equivalence.

Proof. Both ¢ and  induce maps of the K-theory spectra since both are even-
tually continuous and clearly proper. Since bounded endomorphisms induce
equivalences on the bounded K-theory, the induced maps are equivalences. V

Proposition 3.5. If ¢: My — M> is a metric embedding onto a commensurable
subspace, in the sense that there is a number D such thatim(¢p)[D] = M>, then
the induced map of spectra K(M;,R) — K(M>,R) is an equivalence.

Proof. This follows from Corollary 3.4 since any function M, — im(¢) which is
identity on the subspace im(¢) and is bounded by D is a uniform embedding
of M2 in M1. \Y4

Corollary 3.6. If there is a uniform embedding of proper metric spaces X in M
then there is an open subset V of M such that the assembly A(X) is an equiva-
lence if and only if A(M) is an equivalence.

Proof. If ¢: X — M is the uniform embedding then the subset V can be taken
to be the interior of im(¢)[D] for some D > 0. V

The proof of the Main Theorem will require a family of coverings of trees
with specific properties.

Proposition 3.7. There is a family of coverings {U(£)} of a locally finite tree T
by uniformly bounded subsets that satisfies the hypotheses of Theorem 2.5.

Proof. Fix a vertex vy in the geometric realization of the tree T. Given another
vertex v € T, we define its shadow as the subset

Sh(v) = {t € T|lv € [vo, 1)}.

Let B(v, r) stand for the open metric ball of radius » centered at v and S(v, r)
stand for its boundary sphere. If [ > 0 then also define

Sh(v,l) = Sh(v) nB(v,l)
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and
Sh(v;h, l2) = Sh(v,lz) — B(v,l1) — S(v,11)
forl, > 1; > 0.

For a number » > 1, consider the collection of open subsets of T consisting
of the ball B(vy, 2v) and the differences Sh(v;r — 1, 37) where the vertices v
vary over S (vg, (2n —1)r) for arbitrary natural numbers n € N. It is easy to see
that this collection is a covering of T. Its nerve is a locally finite tree where the
vertices are vy and the vertices v € S(vg, (2n — 1)r), the edges are the pairs
(v,v") where v’ € Sh(v,2(n + 1)r). The diameter of each set in the covering
is bounded by 67.

Fix a number D > 1. We define coverings U(¥), £ = 0, by applying the
construction with ¥ = 2/D. To see that U(¥) is subordinate to U (£ + 1), notice
that

Up,q (v) = Sh(v; 241D - 1,201(3D))
in U({ + 1) is the union of elements from U (¥). Indeed, if
v € S(vo, (2n - 1)2+1D)
then the corresponding subset is the union of
Up(v') = Sh(v’;2'D - 1,2¢(3D))

for all vertices v’ in S (vo, 2¢ (4n—1)D) nSh(v) orin S(vo, 2¢(4n+1)D)NSh(v).
To check property (2), one only needs to choose £ > log, d/D +2. V

Notation 3.8. In addition to the notation
Up(v) =Sh(v;2!D - 1,2¢(3D))

introduced in Proposition 3.7 for elements of U(¥), we will use Uy(v,v’) for
the nonempty pairwise intersections Uy (v) N Up(v’).
Explicitly, if v € S(vo, (2n — 1)r) and v’ € S(vg,(2n + 1)r) so that v €
[vg, V'], then
Up(v,v’) = Sh(v’;2!D - 1,2'D).

Let IT = [, T; be a product of n locally finite trees. Let Z be a countable
discrete generalized metric space, in the sense that the metric function d takes
only values 0 and .

Theorem 3.9. If there is a uniform embedding of X in a product of the form
I1 X Z then the canonical assembly map A(X) is a weak equivalence.

We are interested in this theorem when X is a geodesic metric space of
bounded geometry and Z is a single point, but the setup for the following
inductive proof requires this general statement.

Proof. The proof proceeds by induction on the number n in the product II.
Suppose X has a uniform embedding ¢ in a product I1 x Z = [[}*, T; X Z. By
Corollary 3.6, we may assume that X is an open metric subspace of IT x Z, and
¢ is the embedding. Let 7r: IT — T; be the first coordinate projection. Using
the coverings U (¥) of Ty from Theorem 2.5, construct the associated coverings
U ={U =1 (U) | Ue UHX)} of TI. Now there are product coverings
UXZ, UL)xZ,and UE)[d]x Z of 1 x Z defined as {U’ x Z}, {U' (£)x Z}, and
{U'()[d] x Z} for U’ € U’. There are also associated coverings Uy, Ux (£),
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and Ux (£)[d] of X defined as {XNUXZ}, {IXNU{)*xZ},and {XnU {)[d]x Z}.
These coverings of X satisfy the conditions of Proposition 3.7.

The coverings Uy () satisfy the conditions of Theorem 2.5, so the induced
assembly map

hocolim A(‘Ux (£)[d]): hocolim IK(N. Ux{)[d],R)| — K(X,R)
£,d

is an equivalence. For the identification of hocolim A(Ux (£)[d]) with
AX): “h(X,K(R)) — K(X,R),

one observes that by Proposition 1.3 the coverings Uy (£)[d] are excisive, in
addition to the properties in Theorem 2.5. So there is an equivalence

hocolim | “h'(N.Ux (O)[d],K(R))| — “H'(X,K(R)).
0,d

Now the vertical maps in the commutative diagram

hocolim | “h'(N.Ux (£)[d],K(R))| hocolim K (N.Ux (£)[d],R)|
4,d 0,d
l lhocolimA(fux(—E)[d])

Chf(X,K(R)) _AKD | K(X,R)

are weak equivalences. It remains to show that the assembly map

hocolim | “h'(N.Ux (£)[d],K(R))| — hocolim |K (N.Ux (£)[d],R)|
t,d 0,d

is also an equivalence. It will suffice to prove that levelwise
“h(NkUx (0)[d], K (R)) — K(Ni'Ux (£)[d],R)

is an equivalence for all k. This can be shown for a cofinite family of pairs
(¢, d). We take the family to be the pairs such that N.U(¥)[d] is C-1.

Let P = P({,D) be the set of all pairs (i,v) with v € S(vo, (2i — 1)2'D).
In this case the metric space Ny Ux(£)[d] is a finite disjoint union of metric
spaces which are either

(1) [[Xn (m 1 Up(v)[d] x Z),
P

where v € S(vo, (2i — 1)2YD), or of the form

(2) [[Xn (m'u,v”,v)[d] x Z),
P

where v’ € [vg,v] is uniquely determined by v. Here each space of type (2)
corresponds to a choice of an integer 1 < m < 2k*1. For a given m, written in
base 2, the subsets Uy(v”’, v) involved in the expression (2) should be viewed
as the k + 1-fold intersections of the kind Up(v'’) n ... n Up(v) where the
occurrences of Uy(v'") correspond to zeros in m and the occurrences of Uy(v)
correspond to ones in m.
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Let f be a function from P to vertices in T; such that f(i,v) € Up(v",v).
The image of f, which we denote by F, is a countable discrete metric space.
There are inclusions of metric spaces

nlFxZc|[ntUupw)ldl x Z,
P

and

nlFxZc|[ntUpv”,v)d] x Z.

P

Let Fy be either of the metric disjoint unions (1) or (2), then the orthogonal
projection

p:Fy — ' FxZ=ML,TixFxZ

is a bounded map with image Fyx. We have a commutative diagram
“W'(Fy,K(R)) K(Fy,R)

lp* lp*
“nlf(Fx,K(R)) K (Fx,R)

It can be shown that the left hand vertical arrow is an equivalence, cf. V.7 in [3].

Since Fy is commensurable to Fy, the map p: Fy — Fx is a coarse equivalence,

so the right hand vertical arrow is also an equivalence. Now to show that the

upper horizontal arrow is an equivalence, it suffices to show that the lower one

is an equivalence. But Fy is a subspace of IT{* , T; x F x Z, where I1" ,T; is the

product of n — 1 locally finite trees, and F X Z is a countable discrete space.
We may conclude by induction on n that

“W(Fi,K(R)) — K(F§,R)

is an equivalence if this is true for n = 0. In this case X is a disjoint union of
possibly infinitely many uniformly bounded components. Therefore, the cate-
gory of geometric modules on X and bounded homomorphisms is equivalent
to an infinite product, parametrized by the components, of copies of the cate-
gory of finitely generated projective modules over the coefficient ring R. It now
follows from [4] that the K-theory is equivalent to the infinite product of copies
of the spectrum K (R). The same is true for the homology theory W X,K(R))
by Proposition 1.2. This completes the proof of Theorem 3.9 and the Main
Theorem. V
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